Abril-Junio 2016 66
ISSN 1317-987X
 
Buscar




Artículos
 



Bioquímica
Drogas antidiabéticas diferentes de la insulina. Mecanismos de acción

Referencias

1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035.Diabetes Res. Clin. Pract.2014; 103: 137–149.

2. International Diabetes Federation.Brussels: 2013. International Diabetes Federation IDF Diabetes Atlas.

3. Nathan D.M. Long-Term Complications of Diabetes-Mellitus.N. Engl. J. Med.1993; 328:1676–1685.

4. Bailey C, Day C. Metformin: its botanical background.Pract. Diabetes Int. 2004; 21: 115–117.

5. Watanabe C.K. Studies in the metabolic changes induced by administration of guanidine bases.J. Biol. Chem.1918; 33:253–265.I. Influence of injected guanidine hydrochloride upon blood sugar content.

6. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI. Mechanism by which metformin reduces glucose production in type2 diabetes.Diabetes.2000; 49: 2063–2069.

7. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action.J. Clin. Invest.2007; 117:1422–1431.

8. Owen M.R., Doran E., Halestrap A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.Biochem. J. 2000; 348:607–614.

9. Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F. Cellular and molecular mechanisms of metformin: an overview.Clin. Sci.2012; 122:253–270.

10. El-Mir M-Y, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.J. Biol. Chem.2000; 275: 223–228.

11. Stephenne X., Foretz M., Taleux N., van der Zon G.C., Sokal E., Hue L., Viollet B., Guigas B. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status.Diabetologia.2011; 54: 3101–3110.

12. NelsonDL, Cox MM. Lehninger Principles of Biochemistry. 2005. Four edition pp 690- 719 WH. Freedman & Co. New York.

13. Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae K, McDougall G, Wang H-H, Xue L, Jiang H, Sakamoto K, Prescott AR, Rena G. Cellular responses to the metal-binding properties of metformin. Diabetes. 2012; 61: 1423–1433.

14. Repiscak P, Erhardt S, Rena G, Paterson M.J. Biomolecular mode of action of metformin in relation to its copper binding properties.Biochemistry.2014; 53:787–795.

15. Bridges HR, Jones AJY, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria.Biochem. J.2014; 462: 475–487.

16. Drahota Z, Palenickova E, Endlicher R, Milerova M, Brejchova J, Vosahlikova M., Svoboda P, Kazdova L, Kalous M, Cervinkova Z, Cahova M. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol. Res.2014; 63: 1–11.

17. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes : Targets and Therapy 2014: 7 241–253

18. Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev. 2009; 89 :1025–1078.

19. O’Neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes Metab J. 2013; 37:1–21

20. Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature. 2007; 449: 496–500.

21. Davies SP, Helps NR, Cohen PT, Hardie DG. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995; 377: 421–425.

22. Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D. Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem. 2006; 281: 32207–32216.

23. Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013; 18: 556–566.

24. Zhu L., Chen L., Zhou X.M., Zhang Y.Y., Zhang Y.J., Zhao J., Ji S.R., Wu J.W., Wu Y. Structural Insights into the Architecture and Allostery of Full-Length AMP-Activated Protein Kinase. Structure. 2011; 19: 515-522.

25. Iseli TJ, Walter M, van Denderen BJ, Katsis F, Witters LA, Kemp BE, Michell BJ, Stapleton D. AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). J Biol Chem. 2005; 280: 13395-400.

26. McBride A., Ghilagaber S., Nikolaev A., Hardie DG. The Glycogen-Binding Domain on the AMPK β Subunit Allows the Kinase to Act as a Glycogen Sensor. Cell Metab. 2009; 9: 23–34.

27. Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13 :2004–2008.

28. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005; 2: 9–19.

29. Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006; 281: 25336–25343.

30. Hurley RL, Barré LK, Wood SD, et al. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem. 2006; 281: 36662–36672.

31. Ning J, Xi G, Clemmons DR. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology. 2011; 152: 3143–3154.

32. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-α1 downregulates its activation in tumour cells. Biochem J. 2014; 459: 275–287.

33. Munday MR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl- CoA carboxylase. Eur J Biochem. 1988; 175: 331–338.

34. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115: 577–590.

35. Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A. 2002; 99: 15983–15987.

36. Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013; 123: 2764–2772.

37. Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res. 2012; 53: 2490–2514.

38. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB.. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004; 428: 569–574.

39. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest.2001; 108: 1167–1174.

40. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005; 310: 1642–1646.

41. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.J. Clin. Invest.2010; 120: 2355–2369.

42. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O'Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med.2013; 19: 1649–1654.

43. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase.J. Biol. Chem. 2002; 277: 3829–3835.

44. Ouyang J., Parakhia R.A., Ochs R.S. Metformin activates AMP kinase through inhibition of AMP deaminase.J. Biol. Chem. 2011; 286: 1–11.

45. Meng S, Cao J, He Q, Xiong L, Chang E, Radovick S, Wondisford FE, He L. Metformin activates AMP-activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex.J. Biol. Chem.2015; 290: 3793–3802.

46. Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism.Diabetes.2002; 51: 2420–2425.

47. Miller RA, Birnbaum MJ. An energetic tale of AMPK-independent effects of metformin.J. Clin. Invest.2010; 120: 2267–2270.

48. McGrane M.M., El-Maghrabi M.R., Pilkis S.J. The interaction of fructose 2,6- bisphosphate and AMP with rat hepatic fructose 1,6-bisphosphatase.J. Biol. Chem.1983; 258: 10445–10454.

49. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, Browning JD, Magnuson MA. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver.Cell Metab.2007; 5: 313–320.

50. Samuel V.T., Beddow S.A., Iwasaki T., Zhang X.M., Chu X., Still C.D., Gerhard G.S., Shulman G.I. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type2 Diabetes.Proc. Natl. Acad. Sci. U.S.A.2009; 106: 12121–12126.

51. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.Nature.2013; 494: 256–260.

52. Gelling RW, Du XQ, Dichmann DS, Romer J, Huang H, Cui L, Obici S, Tang B, Holst JJ, Fledelius C, Johansen PB, Rossetti L, Jelicks LA, Serup P, Nishimura E, Charron MJ. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice.Proc. Natl. Acad. Sci. U.S.A.2003; 100: 1438–1443.

53. Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.2014; 10: 143–156.

54. Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.Nature.2014; 510: 542–546.

55. Pryor R., Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015; 471: 307–322.

56. Franciosi M, Lucisano G, Lapice E, Strippoli GFM, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type2 diabetes: systematic review. PLoS One.2013; 8: 1–12.

57. Coll T, Rodríguez-Calvo R, Barroso E, Serrano L, Eyre E, Palomer X, Vázquez-Carrera M.. Peroxisome proliferator-activated receptor (PPAR)β/δ: a new potential therapeutic target for the treatment of metabolic syndrome. Curr Mol Pharmacol.2009; 2: 46– 55.

58. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors.Endocrinology.2003; 144: 2201–2207.

59. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature.1990; 347: 645–650.

60. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions.Prog Lipid Res.2006; 45: 120–159.

61. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews. 2006; 58: 726–741.

62. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis.Genes and Dev.2000; 14: 1293–1307.

63. Berger J, Moller DE. The mechanisms of action of PPARs.Annu Rev Med.2002; 53: 409–435.

64. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology.Annu Rev Cell Dev Biol.1996; 12: 335–363.

65. Ricote M, Valledor AF, Glass CK. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis.Arterioscler Thromb Vasc Biol.2004; 24: 230–239.

66. Hevener AL, He W, Barak Y, et al. Muscle-specific Pparg deletion causes insulin resistance.Nat Med. 2003; 9: 1491–1497.

67. Smith U, Gogg S, Johansson A, Olausson T, Rotter V, Svalstedt B. Thiazolidinediones (PPARγagonists) but not PPARαagonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes.FASEB Journal. 2001; 15: 215–220.

68. Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones.Trends Endocrinol Metab.2003; 14: 137–145.

69. Kharroubi I, Lee CH, Hekerman P, Darville MI, Evans RM, Eizirik DL, Cnop M. BCL-6: a possible missing link for anti-inflammatory PPAR-δsignalling in pancreatic beta cells.Diabetologia.2006; 49: 2350–2358.

70. Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR. A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes.Mol Cell Biol.1998; 18: 872–879.

71. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.Nature Medicine.2001; 7: 941–946.

72. Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes.Endocr Rev.2004; 25: 177–204.

73. Monsalve FA, Pyarasani RD, Delgado-LopezF, Moore-Carrasco R. Peroxisome Proliferator-Activated Receptor Targets for the Treatment of Metabolic Diseases. Mediators Inflamm. 2013; 2013: 549-627.

74. Liang YC, Tsai SH, Tsai DC, Lin-Shiau SY, Lin JK. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γby flavonoids in mouse macrophages.FEBS Letters.2001; 496: 12–18.

75. Kleinsorge H.Carbutamide--the first oral antidiabetic. A retrospect. Exp Clin Endocrinol Diabetes. 1998; 106: 149-151.

76. Nolan CJ, Prentki M. The islet beta-cell: fuel responsiveand vulnerable. Trends Endocrinol Metab 2008; 19: 285-291.

77. Nolan CJ, Madiraju MS, Delghnngaro-Augusto V, Peyot ML, Prentiki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006; 55 (Suppl 2): S16-23.

78. Ruiz De Azua I, Gautam D, Guettier JM, Wess J. Novel insights into the function of beta-cell M3 muscarinic acetylcholine receptors: Therapeutic implications. Trends Endocrinol Metab 2011; 22: 74-80.

79. Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: The last ten years. Cell 2012; 148: 1160-1171.

80. Zou, C.-Y, Gong, Y, Liang, J. Metabolic signaling of insulin secretion by pancreatic β-cell and its derangement in type 2 diabetes. Eur. Rev. Med. Pharmacol. Sci. 2014; 18: 2215-2227

81. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, Macdonald MJ, Wollheim CB, Rutter GA. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem 1994; 269: 4895-4902.

82. Kwan EP, Gaisano HY. Rescuing the subprime meltdown in insulin exocytosis in diabetes. Ann N Y Acad Sci 2009; 1152: 154-164.

83. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: From pathophysiology to prevention and management. Lancet. 2011; 378: 169-181.

84. Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis— roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122: 893-903.

85. Reis AF, Velho G. Sulfonylurea receptor-1 (SUR1): genetic and metabolic evidences for a role in the susceptibility to Type 2 diabetes mellitus.Diabetes Metab.2002; 28: 14–19

86. Aquilante CL. Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther. 2010; 8: 359–372.

87. Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1988; 318: 1231–1239.

88. Gromada J, Dissing S, Kofod H, et al. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells. Diabetologia. 1995; 38: 1025–1032.

89. Stein, SA Lamos, EM Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf. 2013; 12: 153–175.

90. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ. 2005; 172: 213–226.

91. Gonzalez- Mujica F., Motta N. Actividad antihiperglicemiante de Bauhinia megalandra. Vitae. 2010; 43: 1-16.

92. Hu R, Li Y, Lv Q, Wu T, Tong N. Acarbose Monotherapy and Type 2 Diabetes Prevention in Eastern and Western Prediabetes: An Ethnicity-specific Meta-analysis. Clin Ther. 2015; 37: 1798-812.

93. Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3: 153-165.

94. Ishii H, Sato Y, Takei M, Nishio S, Komatsu M. Glucose-incretin interaction revisited. Endocrine J. 2011; 58: 519-525.

95. Seino S, Takahashi H, Fujimoto W, Shibasaki T (2009) Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab 11: 180-188.

96. LovshinJA,DruckerDJ.Incretin-based therapies for type 2 diabetes mellitus.Nat Rev Endocrinol. 2009;5: 262–269.

97. UssherJR,DruckerDJ. Cardiovascular biology of the incretin system.Endocr Rev.2012; 33:187–215.

98. AhmadSR,SwannJ. Exenatide and rare adverse events.N Engl J Med.2008; 358: 1971–1972.

99. WangQ, BrubakerPL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-olddb/dbmice. Diabetologia.2002; 45:1263–1273.

100. StoffersDA, DesaiBM,DeLeonDD, SimmonsRA. Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat.Diabetes. 2003;52:734–740.

101. DruckerDJ.Incretin-based therapy and the quest for sustained improvements in β-cell health.Diabetes Care.2011; 34: 2133–2135.

102. GierB,ButlerPC.Glucagon-like peptide 1-based drugs and pancreatitis: clarity at last, but what about pancreatic cancer? JAMA Internal Medicine.2013; 173:539–541.

103. Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ. Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem. 1996; 44: 445–461.

104. Kikuchi M, Fukuyama K, Epstein WL. Soluble dipeptidyl peptidase IV from terminal differentiated rat epidermal cells: purification and its activity on synthetic and natural peptides. Arch Biochem Biophys. 1988; 266: 369–376.

105. Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: A key player in chronic liver disease. World J Gastroenterol. 2013; 19: 2298– 2306.

106. Akter R, Cao P, Noor H, Ridgway Z, Tu L, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J. Diabetes Res. 2016; 2016, Article ID 2798269, 18 pages

107. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014; 8: 1335-1380

108. Meyer C, Strumvoll M, Madkarni V, Dostou J, Mitrakou A, Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Invest. 1998; 102: 619-624

109. Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012; 14: 83–90.

110. Staels B. A review of bile acid sequestrants: potential mechanism(s) for glucose-lowering effects in type 2 diabetes mellitus.Postgrad Med.2009; 121: 25–30.

111. Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters Neuroendocrinology. 1998; 68: 1–10.


Drogas antidiabéticas diferentes de la insulina. Mecanismos de acción
Introducción
Sensibilizadores
AMP Quinasa
Otros efectos de la metformina
Tiazolidinedionas o Glitazonas
Secretagogos
Incretinas y los agonistas del receptor de Incretinas
Inhibidores de la dipeptidil peptidasa 4
Referencias

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit