Acumulado Enero - Diciembre 2022 (89 - 92) 89
ISSN 1317-987X
 
Buscar




Artículos
 



Bioanálisis
Síntesis y estimación del tamaño por espectroscopía UV/Visible de nanopartículas de plata (NPsAg) empleando quercetina como agente reductor

Referencias bibliográficas

  1. Anuj, S. A., Gajera, H. P., Hirpara, D. G. &. Golakiya, B. A. (2019). “Bacterial membrane destabilization with cationic particles of nano-silver to combat efflux-mediated antibiotic resistance in gram-negative bacteria,” Life Sciences, 230, 178–187.
  2. Crisan, M.C., Teodora, M., & Lucian, M. (2022).Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Applied Sciences. 12, 141-156.
  3. De la Calle, I., Menta, M. & Séby, F. (2016). Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 125, 66-96. https://doi.org/10.1016/j.sab.2016.09.007
  4. Dubey, S.P., Lahtinen, M., & Sillanpää, M. (.2020), Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of rosa rugosa, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 364(1-3), 34-41. https://doi.org/10.1016/j.
  5. Gómez-Villarraga, F., Radnik, J., Martin, A. & Köckritz, A. (2016). Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina. Journal of Nanoparticle Research, 18(6). https://doi.org/10.1007/s11051-016-3453-7
  6. Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
  7. Khodadadi, S., Mahdinezhad, N., Fazeli-Nasab, B., Heidari, MJ., Fakheri, B. & Miri. (2021). A. Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties. BioMed Research International, 1(1), 1-13. https://doi.org : 10.1155/2021/5572252.
  8. Malachowa, N., & DeLeo, F. R. (2010). Mobile genetic elements of Staphylococcus aureus. Cellular and molecular life sciences : CMLS, 67(18), 3057–3071. https://doi.org/10.1007/s00018-010-0389-4
  9. Malachowa, N. & DeLeo, F. R. (2011). Staphylococcus aureus survival in human blood. Virulence, 2(6), 567-569. https://doi.org/10.4161/viru.2.6.17732
  10. Melchior, M., Vaarkamp, H. & Fink-Gremmels, J. (2006, mayo). Biofilms: A role in recurrent mastitis infections? The Veterinary Journal, 171(3), 398-407. https://doi.org/10.1016/j.tvjl.2005.01.006
  11. Meza-Chavarría, P. (2012). Guía: flor de Jamaica (Hibiscus sabdariffa L) e (Hibiscus cruentus Bertol). Asociación para el Desarrollo Eco-Sostenible (ADEES). Chinandega, Nicaragua.
  12. Morales-Díaz, América Berenice, Juárez-Maldonado, Antonio, Morelos-Moreno, Álvaro, González-Morales, Susana, & Benavides-Mendoza, Adalberto. (2016). Biofabricación de nanopartículas de metales usando células vegetales o extractos de plantas. Revista mexicana de ciencias agrícolas, 7(5), 1211-1224. Disponible en: http://www.redalyc.org/articulo.oa?id=263146723020 [
  13. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  14. Pacheco-Coello, F. (2021), Synthesis and size estimation of silver nanoparticles, by reduction with aqueous extracts of calyces leaves and seeds hibiscus sabdariffa linn: promotion of green synthesis. Revista Boliviana de Química, 38, (3), 126-131
  15. Palhares, R. M., Gonçalves Drummond, M., dos Santos Alves Figueiredo Brasil, B., Pereira Cosenza, G., das Graças Lins Brandão, M. & Oliveira, G. (2015). Medicinal Plants Recommended by the World Health Organization: DNA Barcode Identification Associated with Chemical Analyses Guarantees Their Quality. PLOS ONE, 10(5), e0127866. https://doi.org/10.1371/journal.pone.0127866
  16. Pradeep, T. & Anshup. (2009, octubre). Noble metal nanoparticles for water purification: A critical review. Thin Solid Films, 517(24), 6441-6478. https://doi.org/10.1016/j.tsf.2009.03.195
  17. Ranjbar, T., Sadeghian, F., Goli, H. R., Ahanjan M. & Ebrahimzadeh, A M. (2020). “Green synthesis of silver nanoparticles with Allium paradoxum extract and evaluation of their antibacterial activities,” Journal of Mazandaran University of Medical Sciences, 29(182), 1–11.
  18. Shaikh, S., Nazam, N., Rizvi., S.M.D., Khurshid, A., Hassan, B.,1,Eun J.L. & Choi I. (2019). “Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance,” International Journal of Molecular Sciences,20(10), 2468-2479.
  19. Thakur, S., Sharma, S., Thakur, S., Rai R. (2018). Green synthesis of copper nano-particles using Asparagus adscendens roxb. Root and leaf extract and their antimicrobial activities.. International Journal of Current Microbiology and Applied Sciences, 7(12), 683-694.
  20. Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., &Xia, Y. (2016), Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, The Journal of Physical Chemistry, 110(32), 15666-15675. https://doi.org/10.1021/jp0608628
  21. Wu, S. H. & Chen, D. H. (2003). Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Journal of Colloid and Interface Science, 259(2), 282-286. https://doi.org/10.1016/s0021-9797(02)00135-2
  22. Yadavalli, T. & Shukla, D. (2017). Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomedicine: Nanotechnology, Biology and Medicine, 13(1), 219-230. https://doi.org/10.1016/j.nano.2016.08.016
  23. Zhang, X., Wang, G., Liu, X., Wu, J., Li, M., Gu, J., Liu, H. & Fang, B. (2008). Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors. The Journal of Physical Chemistry C, 112(43), 16845-16849. https://doi.org/10.1021/jp806985k

Síntesis y estimación del tamaño por espectroscopía UV/Visible de nanopartículas de plata (NPsAg) empleando quercetina como agente reductor
Introducción
Materiales y métodos
Resultados
Discusión y conclusiones
Referencias bibliográficas

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit