Enero-Marzo 2021 85
ISSN 1317-987X


Sistema Renina Angiotensina Renal: El papel de la Angiotensina 1-7 y la Enzima Convertidora de Angiotensina 2 en el riñón.


1. Aurell M. The renin-angiotensin system: the centenary jubilee. Blood Press 1998; 7: 71-75.

2. Carey RM, Siragy HM. Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24: 261 – 271.

3. Harris J, Gomez R. Renin angiotensin system genes in kidney development. Microsc Res Tech 1997; 39: 211-221.

4. Caruso-Neves C, Rangel L, Laea L, Lopes A. Regulation of the renal proximal tubule second sodium pump by angiotensin. Braz J Med Biol Res 2001; 34: 1079 – 1084.

5. Kumar R, Boim M. Diversity of pathways for intracellular angiotensin II synthesis. Curr Opin Nephrol Hypertens 2009; 18: 33 – 39.

6. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray J, Hasegawa M, Matsuda Y, Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 1999; 351: 230–233.

7. De Gasparo M, Catt K, Inagami T, Wright J, Unger T. International Union of Pharmacology. XXIII. The angiotensin receptors. Pharmacol Rev 2000; 52: 415–472.

8. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt R, Dzau V. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J. Biol. Chem 1993; 268: 24539–24542.

9. Hansen J, Servant G, Baranski T, Fujita T, Iiri T, Sheikh S. Functional reconstitution of the angiotensin II type 2 receptor and G (i) activation. Circ Res 2000; 87: 753–759.

10. Horiuchi M, Akishita M, Dzau V. Recent progress in angiotensin II type-2 receptor research in the cardiovascular system. Hypertension 1999; 33: 613–621.

11. Berry C, Touyz R, Dominiczak A, Webb R, Johns D. Angiotensin receptors: signaling, vascular pathophysiology and interactions with ceramide. Am J Physiol 2001; 281: H2332–H2365.

12. Yosypiv I. A new role for the Renin-Angiotensin system in the development of the ureteric bud and renal collecting system. Keio J Med 2008; 57: 184-189.

13. Kobori H, Nangaku M, Navar L, Nishiyama A. The intrarenal renin–angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59: 251 – 287.

14. Franco M, Pérez O, Martínez F. Interaction of intrarenal adenosine and angiotensin II in kidney vascular resistent. Curr Opin Nephrol Hypertens 2009; 18: 63 -67.

15. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med 2008; 264: 224 – 236.

16. Dostal D. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul Pept 2000; 91:1–11.

17. Robrwasser A, Morgan R, Dillon H, Zhao L, Callaway C, Hillas E, Zhang S, Cheng T, Inagami T, Ward K, Teveros D, Lalouel J. Elements of a paracrine tubular renin-angiotensin system along the entire nephron. Hypertension 1999; 34: 1265–1274.

18. Nishiyama A, Seth D, Navar L. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 2002; 39: 129–134.

19. Ingelfinger J, Jung F, Diamont D, Havervan L, Lee E, Brem A, Tang S-S. Rat proximal tubule cell line transformed with origin-defective SV40DNA: autocrine ANG II feedback. Am J Physiol 1999; 276: F218–F227.

20. Kobari H, Harrison-Bernard L, Navar L. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension 2001; 37: 1329–1335.

21. Ozono R, Wang Z, Moore A, Inagami T, Siragy H, Carey R. Expression of the subtype-2 angiotensin II (AT2) receptor protein in the rat kidney. Hypertension 1997; 30: 1238–1246.

22. Ardaillou R. Angiotensin II receptors. J Am Soc Nephrol 1999; 10: S30 –S39.

23. Haithcock D, Jiao H, Cui X-L, Hopfer U, Douglas J. Renal proximal tubular AT2 receptor: signaling and transport. J Am Soc Nephrol 1999; 10: S69–S74.

24. Jin X, Siragy H, Carey R. Renal interstitial guanosine cyclic 3-,5- monophosphate induces natriuresis by a direct tubule mechanism. Hypertension 2001; 38: 309–316.

25. Santos R, Campagnole-Santos M, Andrade S. Angiotensin-(1-7): an update. Regul Pept 2000; 91: 45-62.

26. Simões-e-Silva A, Baracho N, Passaglio K, Santos R. Renal actions of angiotensin-(1-7). Braz J Med Biol Res 1997; 30: 503-513.

27. Caruso-Neves C, Lara L, Rangel L, Grossi A, Lopes A. Angiotensin (1-7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim Biophy Acta 2000; 1467: 189- 197.

28. Varagic J, Trask A, Jessup J, Chappell M, Ferrario C. New angiotensins. J Mol Med 2008; 86: 663 – 671.

29. Ferrario C, Brosnihan K, Diz D, Jaiswal N, Khosla M, Milsted A, Tallant E. Angiotensin-(1-7): a new hormone of the angiotensin system. Hypertension 1991; 18: III-126–III-133.

30. Katovich M, Grobe J, Raizada M. Angiotensin-(1-7) as an antihypertensive, antifibrotic target. Curr Hypertens Rep 2008; 10: 227-232.

31. Brosnihan K, Neves L, Joyner J, Averill D, Chappell M, Sarao R, Penninger J, Ferrario C. Enhanced renal immunocytochemical expression of ANG-(1–7) and ACE2 during pregnancy. Hypertension 2003; 42: 749–753.

32. Su Z, Zimpelmann J, Burns K. Angiotensin-(1–7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 2006; 69: 2212–2218.

33. Greene L, Spadaro A, Martins A, Perussi De Jesus W, Camargo A. Brain endo-oligopeptidase B: a post-proline cleaving enzyme that inactivates angiotensin I and II. Hypertension 1982; 4, 178–184.

34. Yamamoto K, Chappell M, Brosnihan K, Ferrario C. In vivo metabolism of angiotensin I by neutral endopeptidase (EC in spontaneously hypertensive rats. Hypertension 1992; 19: 692–696.

35. Welches W, Santos R, Chappell M, Brosnihan K, Greene L, Ferrario C. Evidence that prolil endopeptidase participates in the processing of brain angiotensin. J Hypertens 1991; 9: 631–638.

36. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: E1–E9.

37. Tipnis S, Hooper N, Hyde R, Karran E, Christie G, Turner A. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captoprilinsensitive carboxypeptidase. J Biol Chem 2000; 275: 33238–33243.

38. Lambert D, Hooper N, Turner A. Angiotensin – converting enzyme 2 and new insights into the rennin – angiotensin system. Biochem Pharmacol 2008; 75: 781-786.

39. Soler M, Lloveras J, Batlle D. Angiotensin converting enzyme 2 and its emerging role in the regulation of the rennin angiotensin system. Med Clin 2008; 131: 230 – 236.

40. Acharya K, Sturrock E, Riordan J, Ehlers M. ACE revisited: a new target for structure-based drug design. Nat Rev Drug Discov 2003; 2: 891–902.

41. Ingelfinger J. Angiotensin – converting enzyme 2: implications for blood pressure and kidney disease. Curr Opin Nephrol Hypertens 2009; 18: 79 – 84.

42. Soler M, Wysocki J, Batlle D. Angiotensin converting enzyme 2 and the kidney. Exp Physiol 2007; 93: 549 – 556.

43. Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss H, Siems W, Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 2005; 26: 1270–1277.

44. Doobay M, Talman L, Obr T, Tian X, Davisson R, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007; 292: R373–R381.

45. Xie X, Chen J, Wang X, Zhang F, Liu Y. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006; 78: 2166–2171.

46. Valdes G, Neves L, Anton L, Corthorn J, Chacon C, Germain A, Merrill D, Ferrario C, Sarao R, Penninger J, Brosnihan K. Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 2006; 27: 200–207.

47. Ferrario C. Angiotensin-Converting Enzyme 2 and Angiotensin-(1-7): An Evolving Story in Cardiovascular Regulation. Hypertension 2006; 47: 515-521.

48. Wysocki J, Soler M, Ye M, Batlle D. ACE2 is critically important for angiotensin II metabolism in podocytes. J Am Soc Nephrol 2006; 17: TH-PO877.293A.

49. Velez J, Bland A, Arthur J, Raymond J, Janech M. Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol 2007; 293: F398–F407.

50. Ye M, Wysocki J, William J, Soler M, Cokic I, Batlle D. Glomerular localization and expression of Angiotensin converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006; 17: 3067–3075.

51. Hamming I, Cooper M, Haagmans B, Hooper N, Korstanje R, Osterhaus A, Timens W, Turner A, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol 2007; 212: 1–11.

52. Li N, Zimpelmann J, Cheng K, Wilkins J, Burns K. The role of angiotensin converting enzyme 2 in the generation of angiotensin 1–7 by rat proximal tubules. Am J Physiol Renal Physiol 2005; 288: F353–F362.

53. Tikellis C, Johnston C, Forbes J, BurnsW, Burrell L, Risvanis J, Cooper M. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 2003; 41: 392–397.

54. Lely A, Hamming I, van Goor H, Navis G. Renal ACE2 expression in human kidney disease. J Pathol 2004; 204: 587–593.

55. Chappell M. Emerging evidence for a functional angiotensin–converting enzyme 2–angiotensin–(1-7)–Mas receptor axis. More tan regulation of blood pressure?. Hypertension 2007; 50: 596 – 599.

56. Oudit G, Herzenberg A, Kassiri Z, Wong D, Reich H, Khokha R, Crackower M, Backx P, Penninger J, Scholey J. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 2006; 168: 1808–1820 .

57. Batlle D, Soler M, Wysocki J. New aspects of the renin angiotensin system: angiotensin converting enzyme 2 a potential target for treatment of hypertension and diabetic nephropathy. Curr Opin Hypertens 2008; 17: 250 -257.

58. Gurley S, Allred A, Le T, Griffiths R, Mao L, Philip N, Haystead T, Donoghue M, Breitbart R, Acton S, Rockman H, Coffman T. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 2006; 116: 2218–2225.

59. Diez-Freire C, Vazquez J, Correa de Adjounian M, Ferrari M, Yuan L, Silver X, Torres R, Raizada M. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics 2006; 27: 12–19.

60. Macconi D, Abbate M, Morigi M, Angioletti S, Mister M, Buelli S, Bonomelli M, Mundel P, Endlich K, Remuzzi A, Remuzzi G. Permselective dysfunction of podocyte-podocyte contact upon angiotensin II unravels the molecular target for renoprotective intervention. Am J Pathol 2006; 168: 1073–1085.

61. Sung S, Ziyadeh F, Wang A, Pyagay P, Kanwar Y, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 2006; 17: 3093–3104.

62. Hauser P, Collino F, Bussolati B, Camussi G. Nephrin and endothelial injury. Curr Opin Nephrol Hypertens 2009; 18: 3 -8.

63. Reich H, Oudit G, Penninger J, Choley J, Herzenberg A. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int 2008; 74: 1610-1616.

64. Santos R, Ferreira A, Imoes C. Recents advances in the angiotensin – converting enzyme 2- angiotensin (1-7) – Mas axis. Exp Physiol 2008; 93: 519-527.

65. Santos R, Brosnihan K, Chappell M, Pesquero J, Chernicky C, Greene L. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension 1988; 11: I153–I157.

66. Schiavone M, Santos R, Brosnihan K, Khosla M, Ferrario C. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proc Natl Acad Sci USA 1989; 85, 4095–4098.

67. Campagnole-Santos M, Diaz D, Santos R, Khosla M, Brosnihan K, Ferrario C. Cardiovascular effects of angiotensin-(1–7) injected into the dorsal medulla of rats. Am J Physiol Heart Circ Physiol 1989; 257, H324–H329.

68. Ferrario C, Chappell M, Tallant E, Brosnihan K, Diz D. Counterregulatory actions of angiotensin-(1-7). Hypertension 1997; 30: 535-541.

69. Kumamoto K, Stewart T, Johnson A, Erdos E. Prolylcarboxypeptidase (angiotensinase C) in human lung and cultured cells. J Clin Invest 1981; 67: 210-215.

70. Rowe B, Saylor D, Speth R, Absher D. Angiotensin-(1-7) binding at angiotensin II receptors in the rat brain. Regul Pep 1995; 56: 139 –146.

71. Santos R, Simoes A, Maric C, Silva D, Machado R, Buhr I, Heringer S, Pinheiro S, Lopes M, Bader M, Mendes E, Lemos V, Campagnole-Santos M, Schultheiss H, Speth R, Walther T. Angiotensin-(1-7) is an endogenous ligand for the G protein – coupled receptor Mas. PNAS 2003; 100: 8258-8263.

72. Gembardt F, Grajewski S, Vahl M, Schultheiss H, Walther T. Angiotensin metabolites can stimulate receptors of the Mas related genes family. Mol Cell Biochem 2008; 319: 115-123.

73. Young D, Waitches G, Birchmeier C, Fasano O, Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986; 45:711–719.

74. Deelman L, Sharma K. Mechanisms of kidney fibrosis and the role of antifibrotic therapies. Curr Opin Nephrol Hypertens 2009; 18: 85 – 90.

75. Gallagher P, Ferrario C, Tallant E. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol 2008; 295: C1169-74.

76. Trachte G, Meixner K, Ferrario C, Khosla M. Prostaglandin production in response to angiotensin-(1-7) in rabbit isolated vas deferent. Prostaglandin 1990; 39: 385–389.

77. Li P, Chappell M, Ferrario C, Brosnihan K. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 1997; 29: 394–400.

78. Chansel D, Vandermeerch S, Andrzej O, Curat C, Ardaillou R. Effects of angiotensin IV and angiotensin-(1-7) on basal angiotensin II–stimulated cytosolic Ca21 in mesangial cells. Eur J Pharmacol 2001; 414: 165–175.

79. Rebas E, Zabczynska J, Lachowicicz A. The effect of angiotensin 1-7 on tyrosine kinase activity in rat anterior pituitary. Biochem Biophys Res Commun 2006; 347: 581 – 585.

80. Brosnihan K, Li P, Ferrario C. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 1996; 27: 523-528.

81. Gauthier K, Zhang D, Cui L, Nithipatikom K, Campbell W. Angiotensin II relaxations of bovine adrenal cortical arteries: role of angiotensin II metabolites and endothelial nitric oxide. Hypertension 2008; 52: 150-155.

82. Fernandes L, Fortes Z, Nigro D, Tostes R, Santos R, Carvalho M. Potentiation of bradykinin by angiotensin-(1-7) on arterioles of spontaneously hypertensive rats studies in vivo. Hypertension 2001; 37: 703–709.

83. Grobe J, Mecca A, Lingis M, Shenoy V, Bolton T, Machado J. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 2007; 292: H736–H742.

84. Benter I, Yousif M, Anim J, Cojocel C, Diz D. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol 2006; 290: H684–H691.

85. Carvalho M, Duarte F, Faria-Silva R, Fauler B, da Mata Machado L, de Paula R, Campagnole-Santos M, Santos R. Evidence for Mas-mediated bradykinin potentiation by the angiotensin-(1–7) nonpeptide mimic AVE 0991 in normotensive rats. Hypertension 2007; 50: 762–767.

86. Sampaio W, Henrique de Castro C, Santos R, Schiffrin E, Touyz R. Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 2007; 50: 1093–1098.

87. Santos S, Fernandes L, Mario E, Ferreira A, Porto L, Alvarez-Leite J, Botion L, Bader M, Alenina N, Santos R. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 2007; 57: 340–347.

88. Stewart J, Lazartigues E, Lucchesi P. The angiotensin converting enzyme 2/ Ang (1-7) axis in the heart: a role for Mas communication? Circ Res 2008; 103: 1197 – 1199.

89. Ferreira A, Santos R, Almeida A. Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 2001; 38: 665-668.

90. Iusuf D, Henning R, Van Gilst W, Roks A. Angiotensin 1-7 pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharrmacol 2008; 585: 303-312.

91. Chappell M, Diz D, Yunis C, Ferrario C. Differential actions of angiotensin-(1-7) in the kidney. Kidney Int Suppl 1998; 68: S3-S6.

92. Kucharewicz I, Pawlak R, Matys T, Chabielska E, Buczko W. Angiotensin- (1–7): an active member of the renin–angiotensin system J. Physiol. Pharmacol 2002; 53: 533–540.

93. Lara L, Bica R, Sena S, Correa J, Marques-Fernandes M, Lopes A, Caruso-Neves C. Angiotensin-(1–7) reverses the stimulatory effect of angiotensin II on the proximal tubule Na+-ATPase activity via an A779-sensitive receptor. Regul. Pept 2002; 103: 17–22.

94. Proverbio F, Marín R, Proverbio T. The “second” sodium pump and cell volume. Curr. Top. Membr. Transp. 1989; 34: 105–119.

95. Caruso-Neves C, Coelho-Souza S, Vives D, Goes G, Lara L, Lopes A. Modulation of ouabain-insensitve Na+-ATPase activity in the renal proximal tubule by Mg2+, MgATP and furosemide. Int. J. Biochem. Cell Biol 2002; 34: 1586–1593.

96. Pinheiro S, Simoes e Silva A, Sampaio W, Paula R, Mendes E, Bontempo E. Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension 2004; 44: 490–496.

97. Santos R, Ferreira A, Pinheiro S, Sampaio W, Touyz R, Campagnole-Santos M. Angiotensin-(1–7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 2005; 14: 1019–1031.

98. Ferreira A, Pinheiro S, Castro C, Silva G, Sim˜oes e Silva A, Almeida A. Renal function in transgenic rats expressing an angiotensin-(1–7)-producing fusion protein. Regul Pept 2006; 137: 128–133.

99. Garcia N, Garvin J. Angiotensin 1-7 has a biphasic effect on fluid absorption in the proximal straight tubule. JASN 1994; 5: 1133-1138.

100. Lara L, Calvacante F, Axelband F, De souza A, Lopes A, Caruso C. Involvement of the Gi/o/cGMP/PKG pathway in the AT2-mediated inhibition of outer cortex proximal tubule Na+-ATPase by Ang-(1–7). Biochem. J 2006; 395: 183–190

101. De Souza A, Lopes A, Pizzino C, Fossari R, Miguel N, Cardozo F, Abi-Abib R, Fernandes M, Santos D, Caruso-Neves C. Angiotensin II and angiotensin-(1–7) inhibit the inner cortex Na+-ATPase activity through AT2 receptor. Regul. Pept 2004; 100: 167–175.

102. Jeffrey Y, Carretero O. Vasodilatation action of angiotensin–1-7 on isolated rabbit afferent arterioles. Hypertension 2002; 39: 799 – 802.

103. Benter I, Yousif M, Anim J, Cojocel C, Diz D. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol 2006; 290: H684–H691.

104. Chappell M, Allred A, Ferrario C. Pathways of angiotensin – 1-7 metabolism in the kidney. Nephrol Dial Transplant 2001; 16: 22 – 26.

105. Allred A, Diz D, Chappell M. Pathways for angiotensin 1-7 metabolism in pulmonary and renal tissues. Am J Physiol 2000; 279: F841 – F850.

106. Ura N, Carretero O, Erdos E. Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int 1987; 32: 507 – 513.

107. Lima C, Paula R, Resende F, Khosla M, Santos R. Potentiation of the hipotensive effects of bradykinin by short term infusion of angiotensin 1-7 in normotensive and hypertensive rats. Hypertension 1997; 30: 542 – 548.

108. Ferrario C, Smith R, Brosnihan B, Chappell M, Campese V, Vesterqvist O, Liao W, Ruddy M, Grim C. Effects of omapatrilat on the renin – angiotensin system in salts sensitive hypertensive. Am J Hypertensen 2002; 15: 557-564.

109. Anderson S, Komers R. Inhibition of the renin – angiotensina system: is more better ? Kidney Int 2009; 75: 12 – 14.

110. Ferrario C, Jessup J, Chappell M, Averill D, Brosnihan K, Tallant E, Diz D, Gallagher P. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin converting enzyme 2. Circulation 2005; 111: 2605–2610.

111. Balsamo A, Calderone V, Rapposelli S. New emerging prospects in the pharmacotherapy of hypertension. Cardiovasc Hematol Agents Med Chem 2008; 6: 1-19.

112. Raizada M, Ferrerira A. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol 2007; 50: 112-119.

113. Trask A, Ferrario C. Angiotensin 1-7 pharmacology and new perspectives in cardiovascular treatments. Cardiovasc Drug Rev 2007; 25: 162 – 174.

Sistema Renina Angiotensina Renal: El papel de la Angiotensina 1-7 y la Enzima Convertidora de Angiotensina 2 en el riñón.
Sistema Renina – Angiotensina Renal
Angiotensina 1-7

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.

Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
Este portal ha sido desarrollado gracias al apoyo del Fonacit