Julio-Septiembre 2016 67
ISSN 1317-987X
 
Buscar




Artículos
 




Monografías docentes
Morfogénesis preembrionaria

Referencias

1 Del Rosario A, Flores F. Frecuencia de malformaciones congénitas en el Servicio de Neonatología del Hospital General de México. Rev Mex Ped 2003; 701: 128-31.

2 Tico V, Beghim M. Anencephaly: pitfalls in pregnancy outcome and relevance of the prenatal exam. Rom J Morphol Embryol 2009; 50: 295-7.

3 Yan L. Live births after simultaneous avoidance of monogenic disorders and chromosome abnormality big next-generation sequency with linkage analysis. Proc Natl Acad Sci Usa 2015 Dec 29; 112(52): 15964-9.

4 Moore K, Persaud T. (2013). Embriología clínica. 9ª edición. Elsevier Sauders.

5 Sadler T (2015). Langman Embriología médica. 12a edic. Edit. Wolters Kluwer Lippincott Williams y Wilkins.

6 Purves D. (2016). Neurociencia. 5ª Ed. Edit. Médica Panamericana.

7 Cousins R. Metal elements and gene expression. Ann Rev Nutr 1994; 14: 449-69.

8 MacDonald R. The role of zinc in growth and cell proliferation. J Nutr 2000; 130: 1500S-1508S.

9 Sanes J. Extracellular matrix molecules that influence neural development. Annu Rev Neurosci 1989; 12: 491-516.

10 Campbell A, Hamai D. Differential toxicity of aluminium salts in human cell lines of neural origin. Neurotoxicity 2001; 22(1): 63-71.

11 Butterworth C, Bendich A. Folic acid and the prevention of birth defects. Ann Rev Nutr 1996; 16: 73-97

12 Cuskelly G, McNulty H. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet 1996; 347: 657-9.

13 Spencer J. Flavonoids: modulators of brain functions? Br J Nutr 2008; 99E SUPPL: 2560-77.

14 Celá A, Veselá B. Embryonic toxicity of nanoparticles. Cells tissues organs 2014; 199: 1-23.

15 Hoelting L, Scaeinhardt B. A 3-dimensional human embryonic stem cell-derivated model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 2013; 87: 7821-33.

16 Myllynen P; Loughran C. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 2008; 26: 130-7.

17 Wick P, Malik P. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 2010; 118: 432-6.

18 Wise L, Buschmann M. Embryo-fetal developmental toxicity study design for pharmaceuticals. Birth Defects Res B Dev Reprod Toxicol 2009; 86: 418-28.

19 Anderson S, Eisenstat D. Inter neuro migration from basal forebrain to neocortex: dependence of dlx genes. Science 1997; 278: 474-6

20 Hatten M. The role of migration in CNS neuronal development. Curr Opin Neurobiol 1993; 3: 38-44.

21 Wurm S, Zhang J, Guinea A. Terminal epidermal differentiation is regulated by the interaction of Fra7 2/AP71 with Ezh2 and ERK1/2. Genes and development 2015; Doi: 10.1101/gad.249748.114

22 Ericson J, Montor A. Two critical periods of sonic hedgehog signaling required for the specification of motor neuroidentity. Cell 1996; 87: 661-73.

23 Jessell T, Melton D. Diffusible factors in vertebrate embryonic induction. Cell 1992; 68: 257-270.

24 Kessler D, Melton D. Vertebrate embryonic induction: mesodermal and neural patterning. Science 1994; 266: 596-604.

25 Lamantia A, Colbert M. Retinoic acid induction and regional differentiation prefigure olfactory pathways formation in the mammalian forebrain. Neuron 1993; 10: 1035-1048.

26 Gilbert S. (2003). Biología del desarrollo. 7ª Ed. Edit. Médica Panamericana. P. 881.

27 Martinez A. (2002). Molecular principles of animal development. Oxford University Press. P. 410.

28 Esteller M. Cancer epigenomics: DNA methylomes and histone-modification map. Nature Rev Genet 2007; 8: 286-98.

29 Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 2003; 33: 245-54.

30Jaffe A, Gao Y. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nature Neuroscience 2016; 19: 40–47.

31Sabunciyan S, Aryee M. Genome-wide DNA methylation scan in major depressive disorder. PLoS One. 2012; 7(4): e34451.

32 Flickinger R. AT-rich repetitive DNA sequences transcription frequency and germ laye determination. Mech Dev 2015; 138(3): 227-32.

33 Spiers H, Hannol E. Methylonic trajectories across human fetal brain development. Genome Res 2015; 25: 338-52.

34 Branco M. Maternal DNA methylation regulates early trophoblast development. Developmental Cell. 2015. Doi: 101016/J.devcel.2015.12.027

35 Martin M, Ahmed T. Constitutive hippocampal cholesterol loss underlies poor in old rodents. EMBO Molecular Medicine. 2013. Doi: 1015252/erimm.201303711.

36 Sadler T. (2007). Embriología Médica con orientación clínica. Edit. Médica Panamericana. Montevideo.

37 Smith-Agreda V. (2007). Neuroembriología y órganos de los sentidos: neuroanatomía y neuropsicología. Editorial Edicep.

38 O'Rahilly R (1997). Embriología y Teratología Humana. Edit. Masson, Barcelona.

39Millet C, Lemaire P. The human chordin gene encodes several differentially expressed spliced variants with distinct BMP opposing activities.Mech DevAug 2001; 106(1–2): 85-96.


Morfogénesis preembrionaria
Morfogénesis preembrionaria básica
Morfogénesis preembrionaria básica II
Período preembrionario
Referencias

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit