Acumulado Enero - Diciembre 2023 (93 - 96) 93
ISSN 1317-987X
 
Buscar




Artículos
 



Medicina molecular
NO, NO, NO. Oxido nítrico en la fisiología vascular

Referencias

  1. Aisaka, K., Gross, S. S., Griffith, O. W., and Levi, R. (1989). NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun 160, 881-886.
  2. Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74, 3203-3207.
  3. Bredt, D. S., and Snyder, S. H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87, 682-685.
  4. Bredt, D. S., and Snyder, S. H. (1994). Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63, 175-195.
  5. Buga, G. M., Gold, M. E., Fukuto, J. M., and Ignarro, L. J. (1991). Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17, 187-193.
  6. Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M., and Ignarro, L. J. (1998). NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am J Physiol 275, R1256-1264.
  7. Bush, P. A., Aronson, W. J., Buga, G. M., Rajfer, J., and Ignarro, L. J. (1992). Nitric oxide is a potent relaxant of human and rabbit corpus cavernosum. J Urol 147, 1650-1655.
  8. Crane, B. R., Arvai, A. S., Gachhui, R., Wu, C., Ghosh, D. K., Getzoff, E. D., Stuehr, D. J., and Tainer, J. A. (1997). The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278, 425-431.
  9. Feron, O., Michel, J. B., Sase, K., and Michel, T. (1998). Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 37, 193-200.
  10. Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23, 1121-1131.
  11. Furchgott, R. F., and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376.
  12. Furchgott, R. F., Zawadzki, J. V., and Cherry, P. D. (1981). Vasodilatation (New York, Raven Press).
  13. Garcia-Cardena, G., Martasek, P., Masters, B. S., Skidd, P. M., Couet, J., Li, S., Lisanti, M. P., and Sessa, W. C. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272, 25437-25440.
  14. Garthwaite, J., and Garthwaite, G. (1987). Cellular origins of cyclic GMP responses to excitatory amino acid receptor agonists in rat cerebellum in vitro. J Neurochem 48, 29-39.
  15. Griffith, O. W., and Stuehr, D. J. (1995). Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57, 707-736.
  16. Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y., Kadowitz, P. J., and Ignarro, L. (1979). Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res 5, 211-224.
  17. Gruetter, C. A., Gruetter, D. Y., Lyon, J. E., Kadowitz, P. J., and Ignarro, L. J. (1981). Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J Pharmacol Exp Ther 219, 181-186.
  18. Gryglewski, R. J., Moncada, S., and Palmer, R. M. (1986). Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 87, 685-694.
  19. Hibbs, J. B., Jr., Taintor, R. R., and Vavrin, Z. (1987a). Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473-476.
  20. Hibbs, J. B., Jr., Vavrin, Z., and Taintor, R. R. (1987b). L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138, 550-565.
  21. Holtz, J., Giesler, M., and Bassenge, E. (1983). Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72 Suppl 3, 98-106.
  22. Ignarro, L. J. (1986). Ivited Talk Presented at the IV International Symposium on Mechanisms of vasodilatation. Paper presented at: IV International Symposium on Mechanisms of vasodilatation. (Rochester, Minnesota).
  23. Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Edwards, J. C., Ohlstein, E. H., Gruetter, C. A., and Baricos, W. H. (1980a). Guanylate cyclase activation of nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediates. Biochem Biophys Res Commun 94, 93-100.
  24. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G. (1987a). Endothelium-Derived Relaxing Factor Produced and Released from Artery and Vein Is Nitric Oxide. Proceedings of the National Academy of Sciences of the United States of America 84, 9265-9269.
  25. Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J. (1984). Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther 228, 682-690.
  26. Ignarro, L. J., Bush, P. A., Buga, G. M., Wood, K. S., Fukuto, J. M., and Rajfer, J. (1990). Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170, 843-850.
  27. Ignarro, L. J., Byrns, R. E., Buga, G. M., and Wood, K. S. (1987b). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61, 866-879.
  28. Ignarro, L. J., Byrns, R. E., and Wood, K. S. (1986a). Pharmacological and Biochemical Properties of Endothelium-Derived Relaxant Factor Evidence That Endothelium-Derived Relaxant Factor Is Closely Related To Nitric Oxide Radical. American Heart Association Monograph, II-287.
  29. Ignarro, L. J., Degnan, J. N., Baricos, W. H., Kadowitz, P. J., and Wolin, M. S. (1982). Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta 718, 49-59.
  30. Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K., and Gruetter, C. A. (1980b). Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 110, 275-278.
  31. Ignarro, L. J., Harbison, R. G., Wood, K. S., and Kadowitz, P. J. (1986b). Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther 237, 893-900.
  32. Iyengar, R., Stuehr, D. J., and Marletta, M. A. (1987). Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci U S A 84, 6369-6373.
  33. Katsuki, S., Arnold, W., Mittal, C., and Murad, F. (1977). Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3, 23-35.
  34. Katsuki, S., and Murad, F. (1977). Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol 13, 330-341.
  35. Merrill, J. E., Ignarro, L. J., Sherman, M. P., Melinek, J., and Lane, T. E. (1993). Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151, 2132-2141.
  36. Moncada, S., Palmer, R. M., and Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109-142.
  37. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H. (1978). Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9, 145-158.
  38. Ohlstein, E. H., Barry, B. K., Gruetter, D. Y., and Ignarro, L. J. (1979). Methemoglobin blockade of coronary arterial soluble guanylate cyclase activation by nitroso compounds and its reversal with dithiothreitol. FEBS Lett 102, 316-320.
  39. Palmer, R. M., Ashton, D. S., and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666.
  40. Presta, A., Siddhanta, U., Wu, C., Sennequier, N., Huang, L., Abu-Soud, H. M., Erzurum, S., and Stuehr, D. J. (1998). Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Biochemistry 37, 298-310.
  41. Rajfer, J., Aronson, W. J., Bush, P. A., Dorey, F. J., and Ignarro, L. J. (1992). Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326, 90-94.
  42. Rapoport, R. M., and Murad, F. (1983). Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52, 352-357.
  43. Rees, D. D., Palmer, R. M., and Moncada, S. (1989). Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86, 3375-3378.
  44. Rubanyi, G. M., and Vanhoutte, P. M. (1986). Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250, H822-827.
  45. Salerno, J. C., McMillan, K., and Masters, B. S. (1996). Binding of intermediate, product, and substrate analogs to neuronal nitric oxide synthase: ferriheme is sensitive to ligand-specific effects in the L-arginine binding site. Biochemistry 35, 11839-11845.
  46. Stuehr, D. J., and Griffith, O. W. (1992). Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol 65, 287-346.


Sitios de interés

Introducción
NO.bel
Mecanismo de liberación de óxido nítrico por nitroglicerina y otros compuestos nitrogenados
Identificación del factor relajante derivado de endotelio (EDRF) como óxido nítrico
Óxido nítrico y su función como neurotransmisor relacionado a la respuesta vascular
Futuras direcciones para la investigación del óxido nítrico en la biología vascular
Referencias

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit