Abril-Junio 2013 54
ISSN 1317-987X
 
Buscar




Artículos
 




Inmunología
Las Células T memoria:un enigma aún por esclarecer

Referencias

  1. MacLennan IC. Germinal centers. Annu Rev Immunol 1994; 12: 117-139.
  2. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science 1996; 272(5258): 54-60.
  3. Zimmerman C, Brduscha-Riem K, Blaser C, Zinkernagel RM, Pircher H. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J Exp Med 1996; 183(4): 1367-1375.
  4. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401(6754): 708-712.
  5. Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003; 101(11): 4260-4266.
  6. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4(3): 225-234.
  7. Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol 2000; 164(5): 2338-2346.
  8. Oehen S, Brduscha-Riem K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 1998; 161(10): 5338-5346.
  9. Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 2000; 192(4): 557-564.
  10. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 2000; 192(4): 549-556.
  11. Murali-Krishna K, Ahmed R. Cutting edge: naive T cells masquerading as memory cells. J Immunol 2000; 165(4): 1733-1737.
  12. Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 1988; 140(5): 1401-1407.
  13. Butterfield K, Fathman CG, Budd RC. A subset of memory CD4+ helper T lymphocytes identified by expression of Pgp-1. J Exp Med 1989; 169(4): 1461-1466.
  14. McFarland HI, Nahill SR, Maciaszek JW, Welsh RM. CD11b (Mac-1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection. J Immunol 1992; 149(4): 1326-1333.
  15. Okumura M, Fujii Y, Takeuchi Y, Inada K, Nakahara K, Matsuda H. Age-related accumulation of LFA-1high cells in a CD8+CD45RAhigh T cell population. Eur J Immunol 1993; 23(5): 1057-1063.
  16. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 1997; 186(9): 1407-1418.
  17. Berg EL, Robinson MK, Warnock RA, Butcher EC. The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol 1991; 114(2): 343-349.
  18. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998; 95(1): 258-263.
  19. Swain SL, Bradley LM, Croft M, Tonkonogy S, Atkins G, Weinberg AD, et al. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev 1991; 123: 115-144.
  20. Bradley LM, Atkins GG, Swain SL. Long-term CD4+ memory T cells from the spleen lack MEL-14, the lymph node homing receptor. J Immunol 1992; 148(2): 324-331.
  21. Hou S, Doherty PC. Partitioning of responder CD8+ T cells in lymph node and lung of mice with Sendai virus pneumonia by LECAM-1 and CD45RB phenotype. J Immunol 1993; 150(12): 5494-5500.
  22. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409(6818): 349-354.
  23. Berard M, Tough DF. Qualitative differences between naive and memory T cells. Immunology 2002; 106(2): 127-138.
  24. Jung TM, Gallatin WM, Weissman IL, Dailey MO. Down-regulation of homing receptors after T cell activation. J Immunol 1988; 141(12): 4110-4117.
  25. Fujii Y, Okumura M, Inada K, Nakahara K. Reversal of CD45R isoform switching in CD8+ T cells. Cell Immunol 1992; 139(1): 176-184.
  26. Sparshott SM, Bell EB. Membrane CD45R isoform exchange on CD4 T cells is rapid, frequent and dynamic in vivo. Eur J Immunol 1994; 24(11): 2573-2578.
  27. Tripp RA, Hou S, Doherty PC. Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J Immunol 1995; 154(11): 5870-5875.
  28. Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol 1998; 16: 201-223.
  29. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145-173.
  30. Cho BK, Wang C, Sugawa S, Eisen HN, Chen J. Functional differences between memory and naive CD8 T cells. Proc Natl Acad Sci U S A 1999; 96(6): 2976-2981.
  31. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, et al. Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999; 17: 221-253.
  32. Akbar AN, Salmon M, Savill J, Janossy G. A possible role for bcl-2 in regulating T-cell memory--a 'balancing act' between cell death and survival. Immunol Today 1993; 14(11): 526-532.
  33. Akbar AN, Borthwick N, Salmon M, Gombert W, Bofill M, Shamsadeen N, et al. The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J Exp Med 1993; 178(2): 427-438.
  34. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8(2): 177-187.
  35. Lenardo MJ. Fas and the art of lymphocyte maintenance. J Exp Med 1996; 183(3): 721-724.
  36. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998; 8(5): 615-623.
  37. Van Parijs L, Peterson DA, Abbas AK. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 1998; 8(2): 265-274.
  38. Petschner F, Zimmerman C, Strasser A, Grillot D, Nunez G, Pircher H. Constitutive expression of Bcl-xL or Bcl-2 prevents peptide antigen-induced T cell deletion but does not influence T cell homeostasis after a viral infection. Eur J Immunol 1998; 28(2): 560-569.
  39. Jones LA, Chin LT, Longo DL, Kruisbeek AM. Peripheral clonal elimination of functional T cells. Science 1990; 250(4988): 1726-1729.
  40. Webb S, Morris C, Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell 1990; 63(6): 1249-1256.
  41. MacDonald HR, Baschieri S, Lees RK. Clonal expansion precedes anergy and death of V beta 8+ peripheral T cells responding to staphylococcal enterotoxin B in vivo. Eur J Immunol 1991; 21(8): 1963-1966.
  42. Moskophidis D, Laine E, Zinkernagel RM. Peripheral clonal deletion of antiviral memory CD8+ T cells. Eur J Immunol 1993; 23(12): 3306-3311.
  43. Lin JX, Migone TS, Tsang M, Friedmann M, Weatherbee JA, Zhou L, et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 1995; 2(4): 331-339.
  44. Bulfone-Pau SS, Bulanova E, Pohl T, Budagian V, Durkop H, Ruckert R, et al. Death deflected: IL-15 inhibits TNF-alpha-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15R alpha chain. Faseb J 1999; 13(12): 1575-1585.
  45. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191(5): 771-780.
  46. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2(10): 947-950.
  47. Biron CA. Interferons alpha and beta as immune regulators--a new look. Immunity 2001; 14(6): 661-664.
  48. Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 2001; 167(3): 1179-1187.
  49. Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001; 2(9): 882-888.
  50. Ohteki T, Suzue K, Maki C, Ota T, Koyasu S. Critical role of IL-15-IL-15R for antigen-presenting cell functions in the innate immune response. Nat Immunol 2001; 2(12): 1138-1143.
  51. Gray D. A role for antigen in the maintenance of immunological memory. Nat Rev Immunol 2002; 2(1): 60-65.
  52. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996; 274(5284): 94-96.
  53. Busch DH, Pilip IM, Vijh S, Pamer EG. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 1998; 8(3): 353-362.
  54. Wong P, Pamer EG. Cutting edge: antigen-independent CD8 T cell proliferation. J Immunol 2001; 166(10): 5864-5868.
  55. Van Stipdonk MJ, Lemmens EE, Schoenberger SP. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2001; 2(5): 423-429.
  56. Kaech SM, Ahmed R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2001; 2(5): 415-422.
  57. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 2002; 168(4): 1528-1532.
  58. Roman E, Miller E, Harmsen A, Wiley J, Von Andrian UH, Huston G, et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 2002; 196(7): 957-968.
  59. Manjunath N, Shankar P, Wan J, Weninger W, Crowley MA, Hieshima K, et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest 2001; 108(6): 871-878.
  60. Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 2001; 294(5547): 1735-1739.
  61. Opferman JT, Ober BT, Ashton-Rickardt PG. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 1999; 283(5408): 1745-1748.
  62. Grayson JM, Zajac AJ, Altman JD, Ahmed R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J Immunol 2000; 164(8): 3950-3954.
  63. Smith KA. Interleukin-2: inception, impact, and implications. Science 1988; 240(4856): 1169-1176.
  64. Janeway CA, Jr., Bottomly K. Signals and signs for lymphocyte responses. Cell 1994; 76(2): 275-285.
  65. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000; 1(5): 426-432.
  66. D'Souza WN, Schluns KS, Masopust D, Lefrancois L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J Immunol 2002; 168(11): 5566-5572.
  67. Khoruts A, Mondino A, Pape KA, Reiner SL, Jenkins MK. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J Exp Med 1998; 187(2): 225-236.
  68. Kneitz B, Herrmann T, Yonehara S, Schimpl A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur J Immunol 1995; 25(9): 2572-2577.
  69. Leung DT, Morefield S, Willerford DM. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J Immunol 2000; 164(7): 3527-3534.
  70. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002; 195(12): 1523-1532.
  71. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264(5161): 965-968.
  72. Schluns KS, Williams K, Ma A, Zheng XX, Lefrancois L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002; 168(10): 4827-4831.
  73. Badovinac VP, Porter BB, Harty JT. Programmed contraction of CD8(+) T cells after infection. Nat Immunol 2002; 3(7): 619-626.
  74. Badovinac VP, Tvinnereim AR, Harty JT. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-gamma. Science 2000; 290(5495): 1354-1358.
  75. Dalton DK, Haynes L, Chu CQ, Swain SL, Wittmer S. Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J Exp Med 2000; 192(1): 117-122.
  76. Becker TC, Wherry EJ, Boone D, Murali-Krishna K, Antia R, Ma A, et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 2002; 195(12): 1541-1548.
  77. Yajima T, Nishimura H, Ishimitsu R, Watase T, Busch DH, Pamer EG, et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J Immunol 2002; 168(3): 1198-1203.
  78. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 1997; 89(7): 1033-1041.
  79. Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ, Strasser A. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice. Cell 1997; 89(7): 1011-1019.
  80. Kim K, Lee CK, Sayers TJ, Muegge K, Durum SK. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J Immunol 1998; 160(12): 5735-5741.
  81. Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival. Nat Rev Immunol 2003; 3(4): 269-279.
  82. Pihlgren M, Dubois PM, Tomkowiak M, Sjogren T, Marvel J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J Exp Med 1996; 184(6): 2141-2151.
  83. Garcia S, DiSanto J, Stockinger B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 1999; 11(2): 163-171.
  84. Tough DF, Sprent J. Turnover of naive- and memory-phenotype T cells. J Exp Med 1994; 179(4): 1127-1135.
  85. Tough DF, Sprent J. Lifespan of lymphocytes. Immunol Res 1995; 14(1): 1-12.
  86. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 1997; 276(5321): 2057-2062.
  87. Bruno L, von Boehmer H, Kirberg J. Cell division in the compartment of naive and memory T lymphocytes. Eur J Immunol 1996; 26(12): 3179-3184.
  88. Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 1999; 286(5443): 1377-1381.
  89. Swain SL, Hu H, Huston G. Class II-independent generation of CD4 memory T cells from effectors. Science 1999; 286(5443): 1381-1383.
  90. Kassiotis G, Garcia S, Simpson E, Stockinger B. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 2002; 3(3): 244-250.
  91. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996; 272(5270): 1947-1950.
  92. Tough DF, Sun S, Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS). J Exp Med 1997; 185(12): 2089-2094.
  93. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8(5): 591-599.
  94. Tough DF, Zhang X, Sprent J. An IFN-gamma-dependent pathway controls stimulation of memory phenotype CD8+ T cell turnover in vivo by IL-12, IL-18, and IFN-gamma. J Immunol 2001; 166(10): 6007-6011.
  95. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288(5466): 675-678.
  96. Kanai T, Thomas EK, Yasutomi Y, Letvin NL. IL-15 stimulates the expansion of AIDS virus-specific CTL. J Immunol 1996; 157(8): 3681-3687.
  97. Kanegane H, Tosato G. Activation of naive and memory T cells by interleukin-15. Blood 1996; 88(1): 230-235.
  98. Vella A, Teague TK, Ihle J, Kappler J, Marrack P. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J Exp Med 1997; 186(2): 325-330.
  99. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9(5): 669-676.
  100. Lantz O, Grandjean I, Matzinger P, Di Santo JP. Gamma chain required for naive CD4+ T cell survival but not for antigen proliferation. Nat Immunol 2000; 1(1): 54-58.
  101. Vella AT, Dow S, Potter TA, Kappler J, Marrack P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95(7): 3810-3815.
  102. Goldrath AW, Sivakumar PV, Glaccum M, Kennedy MK, Bevan MJ, Benoist C, et al. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 2002; 195(12): 1515-1522.
  103. Kieper WC, Tan JT, Bondi-Boyd B, Gapin L, Sprent J, Ceredig R, et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 2002; 195(12): 1533-1539.
  104. Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373(6510): 123-6.
  105. Hellerstein, M. K., and McCune, J. M. T cell turnover in HIV-1 disease. Immunity 1997; 7(5): 583-9.
  106. Schnittman, S. M.; Lane, H.C.; Greenhouse, J.; Justement, J.S.; Baseler, M. and Fauci, A.S. Preferential infection of CD4 memory T cells by human immunodeficiency virus type I: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci USA 1990; 87: 6058.
  107. Roederer, M.; Raju, P.A.; Mitra, D.K.; and Herzenberg, L.A. HIV do not replicate in naive CD4 T cells stimulated with CD3/CD28. J Clin Invest 1997; 99: 1555.
  108. Chun, T.W.; Chadwick, K.; Margolick, J.; and Siliciano, F. Differential susceptibility of naive and memory CD4+ T cells to the cytopathic effects of infection with human immunodeficiency virus type I strain LAI. J. Virol 1997; 71: 4436.
  109. Riley. J.L.; Levine, B.L.; Graighead, N.; Francomano, T.; Kim, D.; Carroll, R.G. and June, C.H. Naive and memory CD4 T cells differ in their susceptibilities to human immunodeficiency virus type I inefction following CD28 costimulation: implications for transmision and pathogenesis. J Virol 1998; 72(10): 8273.
  110. Chou, H.; Gudeman, C.V.; O´Rourke, S.; Isacescu, V:, Detels, R.; Williamns, G.J.; Mitsuyasu, R.T. and Giorgi, J.V. Phenotypically defined memory CD4+ cells are not selectively decreased in chronic HIV disease. J Acquired Immune Defic Syndr 1994; 7: 665.
  111. Meyaard, I.; Otto, S.A.; Hoolbrink, B.; and Miedema, F. Quantitative analysis of CD4+ T cell function in the course of human immunodeficiency virus infection . Gradual decline of both nnaive and memory alloreactive T cells. J. Clin. Invest 1994; 94: 1947.
  112. Roederer, M.; Dubs, J.G.; Anderson, M.T.; Raju, P.A. and Herzenberg, L.A. CD8 naive T cells counts decrease progressively in HIV-infected adults. J Clin Invest 1995; 95: 2061.
  113. Napolitano, L.A.; Grant, R. M.; Deeks, S.G.; Schmidt, D.; De Rosa, S.C.; Herzenberg, L.A.; Herndier, B.G.; Anderson, J. And McCune, J.M. Increased production of IL-7 accompanies IV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med 2001; 7: 73.
  114. Smithgall, M.D.; Wong, J.G.P.; Critchett, K.E.Haffar, O.K. IL-7 up-regulates HIV-1 replication in naturally infected peripheral blood mononuclear cells. J Immunol 1996; 156: 2324.
  115. Chene. L. et al. Thymocyte-thymic epithelial cell interaction leads to high-level replication of human immunodeficiency virus exclusively in mature CD4+CD8-CD3+ thymocytes: a critical role for tumor factor and interleukin-7. J. Virol 1999; 73: 7533.
  116. Lubong, R.; Ng, H.L.; Uittenbogaart, C.H. and Yang, O.O. Culturing of HIV-1-specific cytotoxic T lymphocytes with interleukin-7 and interleukin-15. Virology 2004; 325(2): 175-80
  117. Lum, J.J.; Schnepple, D.J.; Nie, Z.; Sanchez-Dardon, J.; Mbisa, G.L.; Mihowich, J.; Hawley, N.; Narayan, S.; Kim, J.E.; Lynch, D.H. and Badley, A.D. Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity. J Virol 2004; 78(11): 6033-42.
  118. Petrovas, C.; Mueller, Y.M.; Dimitriou, I.D.; Bojczuk, P.M.; Mounzer, K.C.;, Witek, J.; Altman, J.D. and Katsikis, P.D. HIV-specific CD8+ T cells exhibit markedly reduced levels of Bcl-2 and Bcl-xL. J Immunol 2004; 172(7): 4444-53.
  119. Mueller, Y.M.; Makar, V.; Bojczuk, P.M.; Witek, J. and Katsikis, P.D. IL-15 enhances the function and inhibits CD95/Fas-induced apoptosis of human CD4+ and CD8+ effector-memory T cells. Int Immunol 2003; 15(1): 49-58.
  120. Calarota, S.A., Otero, M., Hermanstayne, K., Lewis, M., Rosati, M., Felber, B.K., Pavlakis, G.N., Boyer, J.D., Weiner, D.B. Use of interleukin 15 to enhance interferon-gamma production by antigen-specific stimulated lymphocytes from rhesus macaques. J Immunol Methods 2003; 279(1-2): 55-67.
  121. Forcina, G., D'Ettorre, G., Mastroianni, C.M., Carnevalini, M., Scorzolini, L., Ceccarelli, G., D'Agostino, C., Lichtner, M., Massetti, A.P., Vullo, V. Interleukin-15 modulates interferon-gamma and beta-chemokine production in patients with HIV infection: implications for immune-based therapy. Cytokine 2004; 25(6): 283-90.
  122. D'Ettorre, G., Forcina, G., Andreotti, M., Sarmati, L., Palmisano, L., Andreoni, M., Vella, S., Mastroianni, C.M., Vullo, V. Interleukin-15 production by monocyte-derived dendritic cells and T cell proliferation in HIV-infected patients with discordant response to highly active antiretroviral therapy. Clin Exp Immunol 2004; 136(1): 189.
  123. Amicosante, M.; Poccia, F.; Gioia, C.; Montesano, C.; Topino, S.; Martín, F.; Narciso, P.; Pucillo, L.P.and D'Offizi, G. Levels of interleukin-15 in plasma may predict a favorable outcome of structured treatment interruption in patients with chronic human immunodeficiency virus infection. J Infect Dis 2003; 188(5): 661-65
Introducción
Diferencias fenotípicas entre células T vírgenes y de memoria
Fases de una respuesta inmunológica
Las citocinas IL-7 e IL-15 en la infección por VIH
Conclusión
Referencias

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit