Acumulado Enero - Diciembre 2023 (93 - 96) 93
ISSN 1317-987X
 
Buscar




Artículos
 



Fisiopatología
Pathobiology of airway smooth muscle remodeling

References

1. Najafi A, Masoudi-Nejad A, Ghanei M, Nourani MR, Moeini A. Pathway reconstruction of airway remodeling in chronic lung diseases: a systems biology approach. PloS one. 2014;9(6):e100094. Epub 2014/07/01.

2. Skold CM. Remodeling in asthma and COPD--differences and similarities. The clinical respiratory journal. 2010;4 Suppl 1:20-7. Epub 2010/06/04.

3. Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society. 2004;1(3):176-83. Epub 2005/08/23.

4. Regamey N, Ochs M, Hilliard TN, Muhlfeld C, Cornish N, Fleming L, et al. Increased airway smooth muscle mass in children with asthma, cystic fibrosis, and non-cystic fibrosis bronchiectasis. American journal of respiratory and critical care medicine. 2008;177(8):837-43. Epub 2008/01/26.

5. McAnulty RJ. Models and approaches to understand the role of airway remodelling in disease. Pulmonary pharmacology & therapeutics. 2011;24(5):478-86. Epub 2011/08/10.

6. Halayko AJ, Amrani Y. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma. Respiratory physiology & neurobiology. 2003;137(2-3):209-22. Epub 2003/10/01.

7. Hirota N, Martin JG. Mechanisms of airway remodeling. Chest. 2013;144(3):1026-32. Epub 2013/09/07.

8. Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of bronchoconstriction on airway remodeling in asthma. The New England journal of medicine. 2011;364(21):2006-15. Epub 2011/05/27.

9. de Oca MM, Halbert RJ, Lopez MV, Perez-Padilla R, Talamo C, Moreno D, et al. The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. The European respiratory journal. 2012;40(1):28-36. Epub 2012/01/28.

10. Kosciuch J, Krenke R, Gorska K, Baran W, Kujawa M, Hildebrand K, et al. Comparison of airway wall remodeling in asthma and COPD: biopsy findings. Respiratory care. 2012;57(4):557-64. Epub 2011/10/19.

11. Woodruff PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. American journal of respiratory and critical care medicine. 2004;169(9):1001-6. Epub 2004/01/17.

12. Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. American journal of respiratory and critical care medicine. 2003;167(10):1360-8. Epub 2003/01/18.

13. Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, et al. Differences in airway remodeling between subjects with severe and moderate asthma. The Journal of allergy and clinical immunology. 2005;116(3):544-9. Epub 2005/09/15.

14. Gorska K, Krenke R, Kosciuch J, Korczynski P, Zukowska M, Domagala-Kulawik J, et al. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease. European journal of medical research. 2009;14 Suppl 4:90-6. Epub 2010/07/14.

15. Rydell-Tormanen K, Risse PA, Kanabar V, Bagchi R, Czubryt MP, Johnson JR. Smooth muscle in tissue remodeling and hyper-reactivity: airways and arteries. Pulmonary pharmacology & therapeutics. 2013;26(1):13-23. Epub 2012/05/09.

16. Ebina M, Takahashi T, Chiba T, Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. The American review of respiratory disease. 1993;148(3):720-6. Epub 1993/09/01.

17. James A, Mauad T, Abramson M, Green F. Airway smooth muscle hypertrophy and hyperplasia in asthma. American journal of respiratory and critical care medicine. 2012;186(6):568; author reply 9. Epub 2012/09/18.

18. Witt CA, Sheshadri A, Carlstrom L, Tarsi J, Kozlowski J, Wilson B, et al. Longitudinal changes in airway remodeling and air trapping in severe asthma. Academic radiology. 2014;21(8):986-93. Epub 2014/07/16.

19. Alagha K, Jarjour B, Bommart S, Aviles B, Varrin M, Gamez AS, et al. Persistent severe hypereosinophilic asthma is not associated with airway remodeling. Respiratory medicine. 2015. Epub 2015/01/17.

20. Syyong HT, Pascoe CD, Zhang J, Arsenault BA, Solomon D, Elliott WM, et al. Ultrastructure of Human Tracheal Smooth Muscle from Asthmatic and Non-asthmatic Subjects: Standardized Methods for Comparison. American journal of respiratory cell and molecular biology. 2014. Epub 2014/07/24.

21. Saetta M, Turato G. Airway pathology in asthma. The European respiratory journal Supplement. 2001;34:18s-23s. Epub 2002/10/24.

22. Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 1998;157(3 Pt 1):822-6. Epub 1998/03/28.

23. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. The New England journal of medicine. 2004;350(26):2645-53. Epub 2004/06/25.

24. Chung KF. The role of airway smooth muscle in the pathogenesis of airway wall remodeling in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society. 2005;2(4):347-54; discussion 71-2. Epub 2005/11/04.

25. Pini L, Pinelli V, Modina D, Bezzi M, Tiberio L, Tantucci C. Central airways remodeling in COPD patients. International journal of chronic obstructive pulmonary disease. 2014;9:927-32. Epub 2014/09/13.

26. Alrifai M, Marsh LM, Dicke T, Kilic A, Conrad ML, Renz H, et al. Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PloS one. 2014;9(1):e85839. Epub 2014/01/28.

27. Bosse Y, Solomon D, Chin LY, Lian K, Pare PD, Seow CY. Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. American journal of physiology Lung cellular and molecular physiology. 2010;298(3):L277-87. Epub 2009/12/17.

28. Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of Severe Asthma. Annual review of pathology. 2014. Epub 2014/11/26.

29. Haley KJ, Sunday ME, Wiggs BR, Kozakewich HP, Reilly JJ, Mentzer SJ, et al. Inflammatory cell distribution within and along asthmatic airways. American journal of respiratory and critical care medicine. 1998;158(2):565-72. Epub 1998/08/12.

30. Halwani R, Vazquez-Tello A, Sumi Y, Pureza MA, Bahammam A, Al-Jahdali H, et al. Eosinophils induce airway smooth muscle cell proliferation. Journal of clinical immunology. 2013;33(3):595-604. Epub 2012/11/28.

31. Fanat AI, Thomson JV, Radford K, Nair P, Sehmi R. Human airway smooth muscle promotes eosinophil differentiation. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2009;39(7):1009-17. Epub 2009/05/15.

32. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. The New England journal of medicine. 2002;346(22):1699-705. Epub 2002/05/31.

33. Okayama Y, Ra C, Saito H. Role of mast cells in airway remodeling. Current opinion in immunology. 2007;19(6):687-93. Epub 2007/09/01.

34. Kaur D, Hollins F, Saunders R, Woodman L, Sutcliffe A, Cruse G, et al. Airway smooth muscle proliferation and survival is not modulated by mast cells. Clinical & Experimental Allergy. 2010;40(2):279-88.

35. Kaur D, Doe C, Woodman L, Wan WY, Sutcliffe A, Hollins F, et al. Mast cell-airway smooth muscle crosstalk: the role of thymic stromal lymphopoietin. Chest. 2012;142(1):76-85. Epub 2011/11/05.

36. Hollins F, Kaur D, Yang W, Cruse G, Saunders R, Sutcliffe A, et al. Human airway smooth muscle promotes human lung mast cell survival, proliferation, and constitutive activation: cooperative roles for CADM1, stem cell factor, and IL-6. Journal of immunology (Baltimore, Md : 1950). 2008;181(4):2772-80. Epub 2008/08/08.

37. Elliot JG, Jones RL, Abramson MJ, Green FH, Mauad T, McKay KO, et al. Distribution of airway smooth muscle remodelling in asthma: Relation to airway inflammation. Respirology (Carlton, Vic). 2015;20(1):66-72. Epub 2014/09/27.

38. Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS. The histopathology of fatal untreated human respiratory syncytial virus infection. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2007;20(1):108-19. Epub 2006/12/05.

39. Nakagome K, Matsushita S, Nagata M. Neutrophilic inflammation in severe asthma. International archives of allergy and immunology. 2012;158 Suppl 1:96-102. Epub 2012/06/01.

40. Pawankar R, Hayashi M, Yamanishi S, Igarashi T. The paradigm of cytokine networks in allergic airway inflammation. Current opinion in allergy and clinical immunology. 2014. Epub 2014/12/06.

41. Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, et al. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. Journal of immunology (Baltimore, Md : 1950). 2011;186(3):1861-9. Epub 2010/12/29.

42. Ramos-Barbon D, Presley JF, Hamid QA, Fixman ED, Martin JG. Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma. The Journal of clinical investigation. 2005;115(6):1580-9. Epub 2005/05/20.

43. Shifren A, Witt C, Christie C, Castro M. Mechanisms of remodeling in asthmatic airways. Journal of allergy. 2012;2012:316049. Epub 2012/02/09.

44. Fedorov IA, Wilson SJ, Davies DE, Holgate ST. Epithelial stress and structural remodelling in childhood asthma. Thorax. 2005;60(5):389-94. Epub 2005/04/30.

45. Bossley CJ, Fleming L, Gupta A, Regamey N, Frith J, Oates T, et al. Pediatric severe asthma is characterized by eosinophilia and remodeling without T(H)2 cytokines. The Journal of allergy and clinical immunology. 2012;129(4):974-82 e13. Epub 2012/03/06.

46. Doherty TA, Soroosh P, Broide DH, Croft M. CD4+ cells are required for chronic eosinophilic lung inflammation but not airway remodeling. American journal of physiology Lung cellular and molecular physiology. 2009;296(2):L229-35. Epub 2008/12/09.

47. Laporte JC, Moore PE, Baraldo S, Jouvin MH, Church TL, Schwartzman IN, et al. Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. American journal of respiratory and critical care medicine. 2001;164(1):141-8. Epub 2001/07/04.

48. Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, et al. Inhibition of airway remodeling in IL-5-deficient mice. The Journal of clinical investigation. 2004;113(4):551-60. Epub 2004/02/18.

49. Hawker KM, Johnson PR, Hughes JM, Black JL. Interleukin-4 inhibits mitogen-induced proliferation of human airway smooth muscle cells in culture. The American journal of physiology. 1998;275(3 Pt 1):L469-77. Epub 1998/09/05.

50. Sohal SS, Ward C, Danial W, Wood-Baker R, Walters EH. Recent advances in understanding inflammation and remodeling in the airways in chronic obstructive pulmonary disease. Expert review of respiratory medicine. 2013;7(3):275-88. Epub 2013/06/06.

51. O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. American journal of respiratory and critical care medicine. 1997;155(3):852-7. Epub 1997/03/01.

52. Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(43):15407-15. Epub 2011/10/28.

53. Harkness LM, Ashton AW, Burgess JK. Asthma is not only an airway disease, but also a vascular disease. Pharmacology & therapeutics. 2014. Epub 2014/12/03.

54. Li M, Shang YX, Wei B, Yang YG. The effect of substance P on asthmatic rat airway smooth muscle cell proliferation, migration, and cytoplasmic calcium concentration in vitro. Journal of inflammation (London, England). 2011;8(1):18. Epub 2011/07/23.

55. Trian T, Allard B, Dupin I, Carvalho G, Ousova O, Maurat E, et al. House Dust Mites Induce Proliferation of Severe Asthmatic Smooth Muscle Cells via an Epithelium-dependent Pathway. American journal of respiratory and critical care medicine. 2015. Epub 2015/01/09.

56. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiological reviews. 2004;84(3):731-65. Epub 2004/07/23.

57. Batra J, Chatterjee R, Ghosh B. Inducible nitric oxide synthase (iNOS): role in asthma pathogenesis. Indian journal of biochemistry & biophysics. 2007;44(5):303-9. Epub 2008/03/18.

58. Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. British journal of pharmacology. 2009;158(3):652-64. Epub 2009/08/26.

59. Howarth PH, Knox AJ, Amrani Y, Tliba O, Panettieri RA, Jr., Johnson M. Synthetic responses in airway smooth muscle. The Journal of allergy and clinical immunology. 2004;114(2 Suppl):S32-50. Epub 2004/08/17.

60. Singh SR, Billington CK, Sayers I, Hall IP. Clonally expanded human airway smooth muscle cells exhibit morphological and functional heterogeneity. Respiratory research. 2014;15:57. Epub 2014/06/03.

61. Wright DB, Trian T, Siddiqui S, Pascoe CD, Johnson JR, Dekkers BG, et al. Phenotype modulation of airway smooth muscle in asthma. Pulmonary pharmacology & therapeutics. 2013;26(1):42-9. Epub 2012/09/04.

62. Johnson PR, Roth M, Tamm M, Hughes M, Ge Q, King G, et al. Airway smooth muscle cell proliferation is increased in asthma. American journal of respiratory and critical care medicine. 2001;164(3):474-7. Epub 2001/08/14.

63. Gosens R, Meurs H, Bromhaar MM, McKay S, Nelemans SA, Zaagsma J. Functional characterization of serum- and growth factor-induced phenotypic changes in intact bovine tracheal smooth muscle. British journal of pharmacology. 2002;137(4):459-66. Epub 2002/10/03.

64. Deshpande DA, Penn RB. Targeting G protein-coupled receptor signaling in asthma. Cellular signalling. 2006;18(12):2105-20. Epub 2006/07/11.

65. Hamad AM, Johnson SR, Knox AJ. Antiproliferative effects of NO and ANP in cultured human airway smooth muscle. The American journal of physiology. 1999;277(5 Pt 1):L910-8. Epub 1999/11/24.

66. Placeres-Uray F, Gonzalez de Alfonzo R, Lippo de Becemberg I, Alfonzo MJ. Soluble guanylyl cyclase is reduced in airway smooth muscle cells from a murine model of allergic asthma. The World Allergy Organization journal. 2010;3(12):271-6. Epub 2010/12/01.

67. Berkman N, Krishnan VL, Gilbey T, Newton R, O'Connor B, Barnes PJ, et al. Expression of RANTES mRNA and protein in airways of patients with mild asthma. American journal of respiratory and critical care medicine. 1996;154(6 Pt 1):1804-11. Epub 1996/12/01.

68. Lazaar AL, Panettieri RA, Jr. Airway smooth muscle as an immunomodulatory cell: a new target for pharmacotherapy? Current opinion in pharmacology. 2001;1(3):259-64. Epub 2001/11/20.

69. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA, Jr. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. The Journal of experimental medicine. 1994;180(3):807-16. Epub 1994/09/01.

70. Hakonarson H, Kim C, Whelan R, Campbell D, Grunstein MM. Bi-directional activation between human airway smooth muscle cells and T lymphocytes: role in induction of altered airway responsiveness. Journal of immunology (Baltimore, Md : 1950). 2001;166(1):293-303. Epub 2000/12/21.

71. Al Heialy S, Risse PA, Zeroual MA, Roman HN, Tsuchiya K, Siddiqui S, et al. T cell-induced airway smooth muscle cell proliferation via the epidermal growth factor receptor. American journal of respiratory cell and molecular biology. 2013;49(4):563-70. Epub 2013/05/10.

72. Johnson PR, Black JL, Carlin S, Ge Q, Underwood PA. The production of extracellular matrix proteins by human passively sensitized airway smooth-muscle cells in culture: the effect of beclomethasone. American journal of respiratory and critical care medicine. 2000;162(6):2145-51. Epub 2000/12/09.

73. Foda HD, George S, Rollo E, Drews M, Conner C, Cao J, et al. Regulation of gelatinases in human airway smooth muscle cells: mechanism of progelatinase A activation. The American journal of physiology. 1999;277(1 Pt 1):L174-82. Epub 1999/07/17.

74. Johnson S, Knox A. Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. The American journal of physiology. 1999;277(6 Pt 1):L1109-17. Epub 1999/12/22.

75. Schuliga M, Ong SC, Soon L, Zal F, Harris T, Stewart AG. Airway smooth muscle remodels pericellular collagen fibrils: implications for proliferation. American journal of physiology Lung cellular and molecular physiology. 2010;298(4):L584-92. Epub 2010/01/19.

76. Larocca NE, Moreno D, Garmendia J, De Sanctis JB. Niveles séricos de metaloproteinasa 9 (mmp-9) y del inhibidor tisular de mmp tipo 1 (timp-1) en pacientes venezolanos con asma o con enfermedad pulmonar obstructiva crónica (epoc). Revista de la Facultad de Medicina. 2010;33:6-10.

77. Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of applied physiology (Bethesda, Md : 1985). 2013;114(7):834-43. Epub 2013/01/12.

78. Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? American journal of physiology Lung cellular and molecular physiology. 2013;305(12):L912-33. Epub 2013/10/22.

79. Thomson RJ, Bramley AM, Schellenberg RR. Airway muscle stereology: implications for increased shortening in asthma. American journal of respiratory and critical care medicine. 1996;154(3 Pt 1):749-57. Epub 1996/09/01.

80. Ward C, Johns DP, Bish R, Pais M, Reid DW, Ingram C, et al. Reduced airway distensibility, fixed airflow limitation, and airway wall remodeling in asthma. American journal of respiratory and critical care medicine. 2001;164(9):1718-21. Epub 2001/11/24.

81. Sukkar MB, Stanley AJ, Blake AE, Hodgkin PD, Johnson PR, Armour CL, et al. 'Proliferative' and 'synthetic' airway smooth muscle cells are overlapping populations. Immunology and cell biology. 2004;82(5):471-8. Epub 2004/10/14.

82. Ma X, Wang Y, Stephens NL. Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. The American journal of physiology. 1998;274(5 Pt 1):C1206-14. Epub 1998/06/05.

83. Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture. Physiological reviews. 1979;59(1):1-61. Epub 1979/01/01.

84. Halayko AJ, Salari H, Ma X, Stephens NL. Markers of airway smooth muscle cell phenotype. The American journal of physiology. 1996;270(6 Pt 1):L1040-51. Epub 1996/06/01.

85. Widdop S, Daykin K, Hall IP. Expression of muscarinic M2 receptors in cultured human airway smooth muscle cells. American journal of respiratory cell and molecular biology. 1993;9(5):541-6. Epub 1993/11/01.

86. Halayko AJ, Camoretti-Mercado B, Forsythe SM, Vieira JE, Mitchell RW, Wylam ME, et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. The American journal of physiology. 1999;276(1 Pt 1):L197-206. Epub 1999/01/14.

87. Yu ZH, Wang YX, Song Y, Lu HZ, Hou LN, Cui YY, et al. Up-regulation of KCa3.1 promotes human airway smooth muscle cell phenotypic modulation. Pharmacological research : the official journal of the Italian Pharmacological Society. 2013;77:30-8. Epub 2013/09/24.

88. Clifford RL, Singer CA, John AE. Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function. Pulmonary pharmacology & therapeutics. 2013;26(1):75-85. Epub 2012/07/18.

89. Borger P, Matsumoto H, Boustany S, Gencay MM, Burgess JK, King GG, et al. Disease-specific expression and regulation of CCAAT/enhancer-binding proteins in asthma and chronic obstructive pulmonary disease. The Journal of allergy and clinical immunology. 2007;119(1):98-105. Epub 2007/01/09.

90. Halayko AJ, Stelmack GL, Yamasaki A, McNeill K, Unruh H, Rector E. Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle. Canadian journal of physiology and pharmacology. 2005;83(1):104-16. Epub 2005/03/11.

91. Roth M, Johnson PR, Borger P, Bihl MP, Rudiger JJ, King GG, et al. Dysfunctional interaction of C/EBPalpha and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. The New England journal of medicine. 2004;351(6):560-74. Epub 2004/08/06.

92. Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P, Ojo OO, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(26):10775-80. Epub 2009/06/23.

93. Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. The Journal of experimental medicine. 2007;204(13):3173-81. Epub 2007/12/07.

94. Borger P, Miglino N, Baraket M, Black JL, Tamm M, Roth M. Impaired translation of CCAAT/enhancer binding protein alpha mRNA in bronchial smooth muscle cells of asthmatic patients. The Journal of allergy and clinical immunology. 2009;123(3):639-45. Epub 2009/01/06.

95. Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. The Journal of allergy and clinical immunology. 2012;130(4):877-85 e5. Epub 2012/09/06.

96. Nie M, Knox AJ, Pang L. beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. Journal of immunology (Baltimore, Md : 1950). 2005;175(1):478-86. Epub 2005/06/24.

97. Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. Journal of immunology (Baltimore, Md : 1950). 2012;189(2):819-31. Epub 2012/06/13.

98. Royce SG, Dang W, Ververis K, De Sampayo N, El-Osta A, Tang ML, et al. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease. Epigenetics : official journal of the DNA Methylation Society. 2011;6(12):1463-70. Epub 2011/12/06.

99. Ooi AT, Ram S, Kuo A, Gilbert JL, Yan W, Pellegrini M, et al. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation. American journal of translational research. 2012;4(2):219-28. Epub 2012/05/23.

100. Cheng RY, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, et al. Alterations of the lung methylome in allergic airway hyper-responsiveness. Environmental and molecular mutagenesis. 2014;55(3):244-55. Epub 2014/01/22.

101. Singh SR, Hall IP. Airway myofibroblasts and their relationship with airway myocytes and fibroblasts. Proceedings of the American Thoracic Society. 2008;5(1):127-32. Epub 2007/12/21.

102. Berair R, Saunders R, Brightling CE. Origins of increased airway smooth muscle mass in asthma. BMC medicine. 2013;11:145. Epub 2013/06/08.

103. Lo CY, Michaeloudes C, Bhavsar PK, Huang CD, Wang CH, Kuo HP, et al. Increased phenotypic differentiation and reduced corticosteroid sensitivity of fibrocytes in severe asthma. The Journal of allergy and clinical immunology. 2014. Epub 2014/12/10.

104. Singh SR, Sutcliffe A, Kaur D, Gupta S, Desai D, Saunders R, et al. CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration. Allergy. 2014;69(9):1189-97. Epub 2014/06/17.

105. Lin TY, Venkatesan N, Nishioka M, Kyoh S, Al-Alwan L, Baglole CJ, et al. Monocyte-derived fibrocytes induce an inflammatory phenotype in airway smooth muscle cells. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2014;44(11):1347-60. Epub 2014/09/27.

106. Wu Y, Fu H, Yang H, Wang H, Zhang H, Qin D. Smooth muscle progenitor cells involved in the development of airway remodeling in a murine model of asthma. Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand. 2014;32(3):203-10. Epub 2014/10/01.

107. Kuroishi S, Suda T, Fujisawa T, Ide K, Inui N, Nakamura Y, et al. Epithelial-mesenchymal transition induced by transforming growth factor-beta1 in mouse tracheal epithelial cells. Respirology (Carlton, Vic). 2009;14(6):828-37. Epub 2009/08/08.

108. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development (Cambridge, England). 2012;139(12):2139-49. Epub 2012/05/11.

109. de Boer WI, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN, Braunstahl GJ. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Canadian journal of physiology and pharmacology. 2008;86(3):105-12. Epub 2008/04/18.

110. Hackett TL, Warner SM, Stefanowicz D, Shaheen F, Pechkovsky DV, Murray LA, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. American journal of respiratory and critical care medicine. 2009;180(2):122-33. Epub 2009/05/02.

111. Johnson JR, Roos A, Berg T, Nord M, Fuxe J. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PloS one. 2011;6(1):e16175. Epub 2011/02/02.

112. Fischer KD, Agrawal DK. Vitamin D regulating TGF-ss induced epithelial-mesenchymal transition. Respiratory research. 2014;15(1):146. Epub 2014/11/22.

113. Meurs H, Dekkers BG, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulmonary pharmacology & therapeutics. 2013;26(1):145-55. Epub 2012/07/31.

114. Yang K, Song Y, Tang YB, Xu ZP, Zhou W, Hou LN, et al. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells. BMC pulmonary medicine. 2014;14:53. Epub 2014/04/01.

115. Saunders R, Siddiqui S, Kaur D, Doe C, Sutcliffe A, Hollins F, et al. Fibrocyte localization to the airway smooth muscle is a feature of asthma. The Journal of allergy and clinical immunology. 2009;123(2):376-84. Epub 2008/12/17.

116. Kuo KH, Herrera AM, Seow CY. Ultrastructure of airway smooth muscle. Respiratory physiology & neurobiology. 2003;137(2-3):197-208. Epub 2003/10/01.

117. Gosens R, Zaagsma J, Grootte Bromhaar M, Nelemans A, Meurs H. Acetylcholine: a novel regulator of airway smooth muscle remodelling? European journal of pharmacology. 2004;500(1-3):193-201. Epub 2004/10/07.

118. Balogh G, Dimitrov-Szokodi D, Husveti A. Lung denervation in the therapy of intractable bronchial asthma. The Journal of thoracic surgery. 1957;33(2):166-84. Epub 1957/02/01.

119. Bleecker ER. Cholinergic and neurogenic mechanisms in obstructive airways disease. The American journal of medicine. 1986;81(5A):93-102. Epub 1986/11/14.

120. Kistemaker LE, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends in pharmacological sciences. 2014. Epub 2014/12/17.

121. Gosens R, Bos IS, Zaagsma J, Meurs H. Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling. American journal of respiratory and critical care medicine. 2005;171(10):1096-102. Epub 2005/02/08.

122. Placeres-Uray FA, Febres-Aldana CA, Fernandez-Ruiz R, Gonzalez de Alfonzo R, Lippo de Becemberg IA, Alfonzo MJ. M2 Muscarinic acetylcholine receptor modulates rat airway smooth muscle cell proliferation. The World Allergy Organization journal. 2013;6(1):22. Epub 2014/01/01.

123. Kistemaker LE, Oenema TA, Meurs H, Gosens R. Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life sciences. 2012;91(21-22):1126-33. Epub 2012/03/13.

124. Maeda A, Kubo T, Mishina M, Numa S. Tissue distribution of mRNAs encoding muscarinic acetylcholine receptor subtypes. FEBS letters. 1988;239(2):339-42. Epub 1988/11/07.

125. Lucchesi PA, Scheid CR, Romano FD, Kargacin ME, Mullikin-Kilpatrick D, Yamaguchi H, et al. Ligand binding and G protein coupling of muscarinic receptors in airway smooth muscle. The American journal of physiology. 1990;258(4 Pt 1):C730-8. Epub 1990/04/01.

126. Schlenz H, Kummer W, Jositsch G, Wess J, Krasteva G. Muscarinic receptor-mediated bronchoconstriction is coupled to caveolae in murine airways. American journal of physiology Lung cellular and molecular physiology. 2010;298(5):L626-36. Epub 2009/12/22.

127. Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respiratory research. 2006;7:73. Epub 2006/05/11.

128. Novi F, Stanasila L, Giorgi F, Corsini GU, Cotecchia S, Maggio R. Paired activation of two components within muscarinic M3 receptor dimers is required for recruitment of beta-arrestin-1 to the plasma membrane. The Journal of biological chemistry. 2005;280(20):19768-76. Epub 2005/03/17.

129. Nakahara T, Yunoki M, Mitani A, Sakamoto K, Ishii K. Stimulation of muscarinic M2 receptors inhibits atrial natriuretic peptide-mediated relaxation in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's archives of pharmacology. 2002;366(4):376-9. Epub 2002/09/19.

130. Guerra de Gonzalez L, Misle A, Pacheco G, Napoleon de Herrera V, Gonzalez de Alfonzo R, Lippo de Becemberg I, et al. Effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and Nomega(6)-nitro-L-arginine methyl ester (NAME) on cyclic GMP levels during muscarinic activation of tracheal smooth muscle. Biochemical pharmacology. 1999;58(4):563-9. Epub 1999/07/21.

131. Marcelo J. Alfonzo FP-U, Walid Hassan-Soto, Adolfo Borges, Ramona González de Alfonzo and Itala Lippo de Becemberg. Two Guanylylcyclases Regulate the Muscarinic Activation of Airway Smooth Muscle. In: Sugi H, editor. Current Basic and Pathological Approaches to the Function of Muscle Cells and Tissues - From Molecules to Humans: InTech; 2012.

132. Alfonzo MJ, De Alfonzo RG, Alfonzo-Gonzalez MA, De Becemberg IL. Cyclic GMP regulates M(3)AChR activity at plasma membranes from airway smooth muscle. Molecular membrane biology. 2013;30(8):403-17. Epub 2013/11/02.

133. Naureckas ET, Ndukwu IM, Halayko AJ, Maxwell C, Hershenson MB, Solway J. Bronchoalveolar lavage fluid from asthmatic subjects is mitogenic for human airway smooth muscle. American journal of respiratory and critical care medicine. 1999;160(6):2062-6. Epub 1999/12/10.

134. Tasaka S, Mizoguchi K, Funatsu Y, Namkoong H, Yamasawa W, Ishii M, et al. Cytokine profile of bronchoalveolar lavage fluid in patients with combined pulmonary fibrosis and emphysema. Respirology (Carlton, Vic). 2012;17(5):814-20. Epub 2012/04/21.

135. Tran T, Teoh CM, Tam JK, Qiao Y, Chin CY, Chong OK, et al. Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013;27(10):3991-4003. Epub 2013/06/13.

136. Gosens R, Nelemans SA, Hiemstra M, Grootte Bromhaar MM, Meurs H, Zaagsma J. Insulin induces a hypercontractile airway smooth muscle phenotype. European journal of pharmacology. 2003;481(1):125-31. Epub 2003/11/26.

137. Oenema TA, Smit M, Smedinga L, Racke K, Halayko AJ, Meurs H, et al. Muscarinic receptor stimulation augments TGF-beta1-induced contractile protein expression by airway smooth muscle cells. American journal of physiology Lung cellular and molecular physiology. 2012;303(7):L589-97. Epub 2012/08/07.

138. Schaafsma D, McNeill KD, Stelmack GL, Gosens R, Baarsma HA, Dekkers BG, et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. American journal of physiology Cell physiology. 2007;293(1):C429-39. Epub 2007/04/27.

139. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. The Journal of biological chemistry. 2001;276(1):341-7. Epub 2000/10/18.

140. Wang DZ, Olson EN. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Current opinion in genetics & development. 2004;14(5):558-66. Epub 2004/09/24.

141. Gosens R, Schaafsma D, Nelemans SA, Halayko AJ. Rho-kinase as a drug target for the treatment of airway hyperrespon-siveness in asthma. Mini reviews in medicinal chemistry. 2006;6(3):339-48. Epub 2006/03/07.

142. Goldsmith AM, Bentley JK, Zhou L, Jia Y, Bitar KN, Fingar DC, et al. Transforming growth factor-beta induces airway smooth muscle hypertrophy. American journal of respiratory cell and molecular biology. 2006;34(2):247-54. Epub 2005/10/22.

143. Halayko AJ, Kartha S, Stelmack GL, McConville J, Tam J, Camoretti-Mercado B, et al. Phophatidylinositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myocyte differentiation. American journal of respiratory cell and molecular biology. 2004;31(3):266-75. Epub 2004/04/24.

144. Camoretti-Mercado B, Dulin NO, Solway J. Serum response factor function and dysfunction in smooth muscle. Respiratory physiology & neurobiology. 2003;137(2-3):223-35. Epub 2003/10/01.

145. Zhou L, Goldsmith AM, Bentley JK, Jia Y, Rodriguez ML, Abe MK, et al. 4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy. American journal of respiratory cell and molecular biology. 2005;33(2):195-202. Epub 2005/05/20.

146. Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, et al. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. Journal of cellular and molecular medicine. 2011;15(11):2430-42. Epub 2011/01/05.

147. Halayko AJ, Tran T, Gosens R. Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proceedings of the American Thoracic Society. 2008;5(1):80-8. Epub 2007/12/21.

148. Gosens R, Stelmack GL, Dueck G, McNeill KD, Yamasaki A, Gerthoffer WT, et al. Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. American journal of physiology Lung cellular and molecular physiology. 2006;291(3):L523-34. Epub 2006/04/18.

149. Sharma P, Tran T, Stelmack GL, McNeill K, Gosens R, Mutawe MM, et al. Expression of the dystrophin-glycoprotein complex is a marker for human airway smooth muscle phenotype maturation. American journal of physiology Lung cellular and molecular physiology. 2008;294(1):L57-68. Epub 2007/11/13.

150. Halayko AJ, Stelmack GL. The association of caveolae, actin, and the dystrophin-glycoprotein complex: a role in smooth muscle phenotype and function? Canadian journal of physiology and pharmacology. 2005;83(10):877-91. Epub 2005/12/08.

151. Yang CM, Luo SF, Wang CC, Chiu CT, Chien CS, Lin CC, et al. Tumour necrosis factor-alpha- and interleukin-1beta-stimulated cell proliferation through activation of mitogen-activated protein kinase in canine tracheal smooth muscle cells. British journal of pharmacology. 2000;130(4):891-9. Epub 2000/06/24.

152. Krymskaya VP, Orsini MJ, Eszterhas AJ, Brodbeck KC, Benovic JL, Panettieri RA, Jr., et al. Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle. American journal of respiratory cell and molecular biology. 2000;23(4):546-54. Epub 2000/10/06.

153. Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature. 2004;428(6979):185-9. Epub 2004/03/12.

154. Page K, Hershenson MB. Mitogen-activated signaling and cell cycle regulation in airway smooth muscle. Frontiers in bioscience : a journal and virtual library. 2000;5:D258-67. Epub 2000/03/07.

155. Panebra A, Schwarb MR, Glinka CB, Liggett SB. Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. American journal of physiology Lung cellular and molecular physiology. 2007;293(2):L453-62. Epub 2007/06/15.

156. Woodruff PG. Gene expression in asthmatic airway smooth muscle. Proceedings of the American Thoracic Society. 2008;5(1):113-8. Epub 2007/12/21.

157. Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, et al. Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. American journal of respiratory cell and molecular biology. 2001;25(4):474-85. Epub 2001/11/06.

158. Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell calcium. 2006;40(4):329-46. Epub 2006/06/13.

159. Fukuyama S, Nakano T, Matsumoto T, Oliver BG, Burgess JK, Moriwaki A, et al. Pulmonary suppressor of cytokine signaling-1 induced by IL-13 regulates allergic asthma phenotype. American journal of respiratory and critical care medicine. 2009;179(11):992-8. Epub 2009/03/21.

160. Gosens R, Nelemans SA, Grootte Bromhaar MM, McKay S, Zaagsma J, Meurs H. Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. American journal of respiratory cell and molecular biology. 2003;28(2):257-62. Epub 2003/01/24.

161. Stamatiou R, Paraskeva E, Vasilaki A, Mylonis I, Molyvdas PA, Gourgoulianis K, et al. Long-term exposure to muscarinic agonists decreases expression of contractile proteins and responsiveness of rabbit tracheal smooth muscle cells. BMC pulmonary medicine. 2014;14:39. Epub 2014/03/13.

162. Gosens R, Bromhaar MM, Tonkes A, Schaafsma D, Zaagsma J, Nelemans SA, et al. Muscarinic M(3) receptor-dependent regulation of airway smooth muscle contractile phenotype. British journal of pharmacology. 2004;141(6):943-50. Epub 2004/03/03.

163. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews Genetics. 2004;5(7):522-31. Epub 2004/06/24.

164. Joshi SR, Comer BS, McLendon JM, Gerthoffer WT. MicroRNA Regulation of Smooth Muscle Phenotype. Molecular and cellular pharmacology. 2012;4(1):1-16. Epub 2012/01/01.

165. Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PloS one. 2011;6(1):e16509. Epub 2011/02/10.

166. Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. American journal of respiratory cell and molecular biology. 2010;42(4):506-13. Epub 2009/06/23.

167. Hu R, Pan W, Fedulov AV, Jester W, Jones MR, Weiss ST, et al. MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2014;28(5):2347-57. Epub 2014/02/14.

168. Dileepan M, Jude JA, Rao SP, Walseth TF, Panettieri RA, Subramanian S, et al. MicroRNA-708 regulates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells. Respiratory research. 2014;15:107. Epub 2014/09/02.

169. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. American journal of respiratory and critical care medicine. 2009;180(8):713-9. Epub 2009/08/01.

170. Perry MM, Tsitsiou E, Austin PJ, Lindsay MA, Gibeon DS, Adcock IM, et al. Role of non-coding RNAs in maintaining primary airway smooth muscle cells. Respiratory research. 2014;15:58. Epub 2014/06/03.

171. Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO reports. 2012;13(11):971-83. Epub 2012/10/17.

172. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, et al. Proliferative aspects of airway smooth muscle. The Journal of allergy and clinical immunology. 2004;114(2 Suppl):S2-17. Epub 2004/08/17.

173. Redhu NS, Shan L, Al-Subait D, Ashdown HL, Movassagh H, Lamkhioued B, et al. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways. Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology. 2013;9(1):41. Epub 2014/02/07.

174. Dekkers BG, Naeimi S, Bos IS, Menzen MH, Halayko AJ, Sadeghi Hashjin G, et al. L-Thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-beta1. American journal of physiology Lung cellular and molecular physiology. 2014:ajplung 00071 2014. Epub 2014/12/07.

175. Shi R, Chen X, Zhu J, Chen L, Zhu S. [Leptin promotes the proliferation of airway smooth muscle cells and the expressions of HIF-1alpha and NF-kappaB of hypoxic rats]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2015;31(1):32-5. Epub 2015/01/13.

176. Florio C, Martin JG, Styhler A, Heisler S. Antiproliferative effect of prostaglandin E2 in cultured guinea pig tracheal smooth muscle cells. The American journal of physiology. 1994;266(2 Pt 1):L131-7. Epub 1994/02/01.

177. Ward JE, Gould H, Harris T, Bonacci JV, Stewart AG. PPAR gamma ligands, 15-deoxy-delta12,14-prostaglandin J2 and rosiglitazone regulate human cultured airway smooth muscle proliferation through different mechanisms. British journal of pharmacology. 2004;141(3):517-25. Epub 2004/01/14.

178. Dekkers BG, Pehlic A, Mariani R, Bos IS, Meurs H, Zaagsma J. Glucocorticosteroids and beta(2)-adrenoceptor agonists synergize to inhibit airway smooth muscle remodeling. The Journal of pharmacology and experimental therapeutics. 2012;342(3):780-7. Epub 2012/06/12.

179. Hamad AM, Clayton A, Islam B, Knox AJ. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. American journal of physiology Lung cellular and molecular physiology. 2003;285(5):L973-83. Epub 2003/10/11.

180. Di Nardo P, Minieri M, Sampaolesi M, Carbone A, Loreni F, Samuel JL, et al. Atrial natriuretic factor (ANF) and ANF receptor C gene expression and localization in the respiratory system: effects induced by hypoxia and hemodynamic overload. Endocrinology. 1996;137(10):4339-50. Epub 1996/10/01.

181. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine reviews. 2006;27(1):47-72. Epub 2005/11/18.

182. Silberbach M, Roberts CT, Jr. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cellular signalling. 2001;13(4):221-31. Epub 2001/04/18.

183. Gosens R, Roscioni SS, Dekkers BG, Pera T, Schmidt M, Schaafsma D, et al. Pharmacology of airway smooth muscle proliferation. European journal of pharmacology. 2008;585(2-3):385-97. Epub 2008/04/18.

184. Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. Journal of applied physiology (Bethesda, Md : 1985). 2001;91(3):1421-30. Epub 2001/08/18.

185. Patel HJ, Belvisi MG, Donnelly LE, Yacoub MH, Chung KF, Mitchell JA. Constitutive expressions of type I NOS in human airway smooth muscle cells: evidence for an antiproliferative role. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1999;13(13):1810-6. Epub 1999/10/03.

186. Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacological reviews. 2000;52(3):375-414. Epub 2000/09/08.

187. Papapetropoulos A, Simoes DC, Xanthou G, Roussos C, Gratziou C. Soluble guanylyl cyclase expression is reduced in allergic asthma. American journal of physiology Lung cellular and molecular physiology. 2006;290(1):L179-84. Epub 2005/09/07.

188. Fogli S, Stefanelli F, Picchianti L, Del Re M, Mey V, Bardelli C, et al. Synergistic interaction between PPAR ligands and salbutamol on human bronchial smooth muscle cell proliferation. British journal of pharmacology. 2013;168(1):266-75. Epub 2012/08/29.

189. Foong RE, Shaw NC, Berry LJ, Hart PH, Gorman S, Zosky GR. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF-beta expression in the lungs of female BALB/c mice. Physiological reports. 2014;2(3):e00276. Epub 2014/04/25.

190. Damera G, Fogle HW, Lim P, Goncharova EA, Zhao H, Banerjee A, et al. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. British journal of pharmacology. 2009;158(6):1429-41. Epub 2009/10/10.

191. Amrani Y, Tliba O, Choubey D, Huang CD, Krymskaya VP, Eszterhas A, et al. IFN-gamma inhibits human airway smooth muscle cell proliferation by modulating the E2F-1/Rb pathway. American journal of physiology Lung cellular and molecular physiology. 2003;284(6):L1063-71. Epub 2003/02/18.

192. Shim JY, Park SW, Kim DS, Shim JW, Jung HL, Park MS. The effect of interleukin-4 and amphiregulin on the proliferation of human airway smooth muscle cells and cytokine release. Journal of Korean medical science. 2008;23(5):857-63. Epub 2008/10/29.

193. He F, Li B, Zhao Z, Zhou Y, Hu G, Zou W, et al. The pro-proliferative effects of nicotine and its underlying mechanism on rat airway smooth muscle cells. PloS one. 2014;9(4):e93508. Epub 2014/04/03.

194. Kistemaker LE, Bos ST, Mudde WM, Hylkema MN, Hiemstra PS, Wess J, et al. Muscarinic M(3) receptors contribute to allergen-induced airway remodeling in mice. American journal of respiratory cell and molecular biology. 2014;50(4):690-8. Epub 2013/10/26.

195. Ediger TL, Toews ML. Synergistic stimulation of airway smooth muscle cell mitogenesis. The Journal of pharmacology and experimental therapeutics. 2000;294(3):1076-82. Epub 2000/08/17.

196. Patel TB. Single transmembrane spanning heterotrimeric g protein-coupled receptors and their signaling cascades. Pharmacological reviews. 2004;56(3):371-85. Epub 2004/08/20.

197. Conway AM, Rakhit S, Pyne S, Pyne NJ. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. The Biochemical journal. 1999;337 ( Pt 2):171-7. Epub 1999/01/12.

198. Oenema TA, Mensink G, Smedinga L, Halayko AJ, Zaagsma J, Meurs H, et al. Cross-talk between transforming growth factor-beta(1) and muscarinic M(2) receptors augments airway smooth muscle proliferation. American journal of respiratory cell and molecular biology. 2013;49(1):18-27. Epub 2013/03/02.

199. Burdon D, Patel R, Challiss RA, Blank JL. Growth inhibition by the muscarinic M(3) acetylcholine receptor: evidence for p21(Cip1/Waf1) involvement in G(1) arrest. The Biochemical journal. 2002;367(Pt 2):549-59. Epub 2002/07/20.

200. Williams CL, Lennon VA. Activation of muscarinic acetylcholine receptors inhibits cell cycle progression of small cell lung carcinoma. Cell regulation. 1991;2(5):373-81. Epub 1991/05/01.

201. Nicke B, Detjen K, Logsdon CD. Muscarinic cholinergic receptors activate both inhibitory and stimulatory growth mechanisms in NIH3T3 cells. The Journal of biological chemistry. 1999;274(31):21701-6. Epub 1999/07/27.

202. Bruges G, Borges A, Sanchez de Villarroel S, Lippo de Becemberg I, Francis de Toba G, Placeres F, et al. Coupling of M3 acetylcholine receptor to Gq16 activates a natriuretic peptide receptor guanylyl cyclase. Journal of receptor and signal transduction research. 2007;27(2-3):189-216. Epub 2007/07/07.

203. Alfonzo MJ, de Aguilar EP, de Murillo AG, de Villarroel SS, de Alfonzo RG, Borges A, et al. Characterization of a G protein-coupled guanylyl cyclase-B receptor from bovine tracheal smooth muscle. Journal of receptor and signal transduction research. 2006;26(4):269-97. Epub 2006/07/05.

204. Uray FP, de Alfonzo RG, de Becemberg IL, Alfonzo MJ. Muscarinic agonists acting through M2 acetylcholine receptors stimulate the migration of an NO-sensitive guanylyl cyclase to the plasma membrane of bovine tracheal smooth muscle. Journal of receptor and signal transduction research. 2010;30(1):10-23. Epub 2009/11/17.

205. Page K, Li J, Hershenson MB. p38 MAP kinase negatively regulates cyclin D1 expression in airway smooth muscle cells. American journal of physiology Lung cellular and molecular physiology. 2001;280(5):L955-64. Epub 2001/04/06.

206. Liu WH, Chen YJ, Cheng TL, Lin SR, Chang LS. Cross talk between p38MAPK and ERK is mediated through MAPK-mediated protein phosphatase 2A catalytic subunit alpha and MAPK phosphatase-1 expression in human leukemia U937 cells. Cellular signalling. 2013;25(9):1845-51. Epub 2013/05/28.

207. Leach K, Simms J, Sexton PM, Christopoulos A. Structure-function studies of muscarinic acetylcholine receptors. Handbook of experimental pharmacology. 2012(208):29-48. Epub 2012/01/10.

208. Robinson SW, Fernandes M, Husi H. Current advances in systems and integrative biology. Computational and structural biotechnology journal. 2014;11(18):35-46. Epub 2014/11/08.

209. Kang JY, Rhee CK, Kim JS, Park CK, Kim SJ, Lee SH, et al. Effect of tiotropium bromide on airway remodeling in a chronic asthma model. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2012;109(1):29-35. Epub 2012/06/26.

210. Kang JY, Lee SY, Rhee CK, Kim SJ, Kwon SS, Kim YK. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model. Clinical interventions in aging. 2013;8:1393-403. Epub 2013/11/10.

211. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell death and differentiation. 2003;10(1):45-65. Epub 2003/03/26.

212. Hamann KJ, Vieira JE, Halayko AJ, Dorscheid D, White SR, Forsythe SM, et al. Fas cross-linking induces apoptosis in human airway smooth muscle cells. American journal of physiology Lung cellular and molecular physiology. 2000;278(3):L618-24. Epub 2000/03/11.

213. Freyer AM, Johnson SR, Hall IP. Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. American journal of respiratory cell and molecular biology. 2001;25(5):569-76. Epub 2001/11/20.

214. Oltmanns U, Sukkar MB, Xie S, John M, Chung KF. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase. American journal of respiratory cell and molecular biology. 2005;32(4):334-41. Epub 2005/01/18.

215. Chang Y, Al-Alwan L, Risse PA, Halayko AJ, Martin JG, Baglole CJ, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2012;26(12):5152-60. Epub 2012/08/18.

216. Halwani R, Al-Abri J, Beland M, Al-Jahdali H, Halayko AJ, Lee TH, et al. CC and CXC chemokines induce airway smooth muscle proliferation and survival. Journal of immunology (Baltimore, Md : 1950). 2011;186(7):4156-63. Epub 2011/03/04.

217. Zhou D, Zheng X, Wang L, Stelmack G, Halayko AJ, Dorscheid D, et al. Expression and effects of cardiotrophin-1 (CT-1) in human airway smooth muscle cells. British journal of pharmacology. 2003;140(7):1237-44. Epub 2003/11/05.

218. McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, et al. Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. American journal of physiology Lung cellular and molecular physiology. 2007;292(1):L278-86. Epub 2006/08/22.

219. Zhao LM, Kuang HY, Zhang LX, Wu JZ, Chen XL, Zhang XY, et al. Effect of TRPV1 channel on proliferation and apoptosis of airway smooth muscle cells of rats. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2014;34(4):504-9. Epub 2014/08/20.

220. Chiba Y, Misawa M. Increased expression of G12 and G13 proteins in bronchial smooth muscle of airway hyperresponsive rats. Inflammation research : official journal of the European Histamine Research Society  [et al]. 2001;50(6):333-6. Epub 2001/07/28.

221. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. The Biochemical journal. 2002;365(Pt 3):561-75. Epub 2002/05/15.

222. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Archiv : European journal of physiology. 2008;456(5):769-85. Epub 2008/03/28.

223. Mahn K, Ojo OO, Chadwick G, Aaronson PI, Ward JP, Lee TH. Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax. 2010;65(6):547-52. Epub 2010/06/05.

224. Zhao L, Sullivan MN, Chase M, Gonzales AL, Earley S. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. American journal of respiratory cell and molecular biology. 2014;50(6):1064-75. Epub 2014/01/08.

225. Zou JJ. Role of STIM1/Orai1-mediated store-operated Ca(2)(+) entry in airway smooth muscle cell proliferation.

226. Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca regulation in airway smooth muscle (ASM). Canadian journal of physiology and pharmacology. 2014:1-14. Epub 2014/12/17.

227. Roth M, Black JL. An imbalance in C/EBPs and increased mitochondrial activity in asthmatic airway smooth muscle cells: novel targets in asthma therapy? British journal of pharmacology. 2009;157(3):334-41. Epub 2009/04/18.

228. Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KF. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. American journal of respiratory cell and molecular biology. 2014;50(1):7-17. Epub 2013/08/16.

229. Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics (Oxford, England). 2008;24(3):325-32. Epub 2007/12/01.

230. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. Cyclooxygenase-2 and MicroRNA-155 Expression are Elevated in Asthmatic Airway Smooth Muscle Cells. American journal of respiratory cell and molecular biology. 2014. Epub 2014/09/03.

231. Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. American journal of physiology Lung cellular and molecular physiology. 2014;307(9):L727-34. Epub 2014/09/14.

232. Ma L, Brown M, Kogut P, Serban K, Li X, McConville J, et al. Akt activation induces hypertrophy without contractile phenotypic maturation in airway smooth muscle. American journal of physiology Lung cellular and molecular physiology. 2011;300(5):L701-9. Epub 2011/03/08.

233. Zhou L, Li J, Goldsmith AM, Newcomb DC, Giannola DM, Vosk RG, et al. Human bronchial smooth muscle cell lines show a hypertrophic phenotype typical of severe asthma. American journal of respiratory and critical care medicine. 2004;169(6):703-11. Epub 2003/12/25.

234. Deng H, Hershenson MB, Lei J, Bitar KN, Fingar DC, Solway J, et al. p70 Ribosomal S6 kinase is required for airway smooth muscle cell size enlargement but not increased contractile protein expression. American journal of respiratory cell and molecular biology. 2010;42(6):744-52. Epub 2009/08/04.

235. Deng H, Dokshin GA, Lei J, Goldsmith AM, Bitar KN, Fingar DC, et al. Inhibition of glycogen synthase kinase-3beta is sufficient for airway smooth muscle hypertrophy. The Journal of biological chemistry. 2008;283(15):10198-207. Epub 2008/02/07.

236. Bentley JK, Deng H, Linn MJ, Lei J, Dokshin GA, Fingar DC, et al. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(beta) phosphorylation in a mouse model of asthma. American journal of physiology Lung cellular and molecular physiology. 2009;296(2):L176-84. Epub 2008/11/18.

237. McKay S, de Jongste JC, Saxena PR, Sharma HS. Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1. American journal of respiratory cell and molecular biology. 1998;18(6):823-33. Epub 1998/06/25.

238. Goncharova EA, Lim PN, Chisolm A, Fogle HW, 3rd, Taylor JH, Goncharov DA, et al. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. American journal of physiology Lung cellular and molecular physiology. 2010;299(1):L25-35. Epub 2010/04/13.

239. Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta. The Journal of biological chemistry. 2010;285(38):29336-47. Epub 2010/06/08.

240. Mohamed JS, Hajira A, Li Z, Paulin D, Boriek AM. Desmin regulates airway smooth muscle hypertrophy through early growth-responsive protein-1 and microRNA-26a. The Journal of biological chemistry. 2011;286(50):43394-404. Epub 2011/09/10.

241. Wu P, Dupont WD, Griffin MR, Carroll KN, Mitchel EF, Gebretsadik T, et al. Evidence of a causal role of winter virus infection during infancy in early childhood asthma. American journal of respiratory and critical care medicine. 2008;178(11):1123-9. Epub 2008/09/09.

242. Huckabee MM, Peebles RS, Jr. Novel concepts in virally induced asthma. Clinical and molecular allergy : CMA. 2009;7:2. Epub 2009/01/22.

243. Johnston SL. Overview of virus-induced airway disease. Proceedings of the American Thoracic Society. 2005;2(2):150-6. Epub 2005/08/23.

244. Arden KE, Mackay IM. Human rhinoviruses: coming in from the cold. Genome medicine. 2009;1(4):44. Epub 2009/05/15.

245. Azevedo AM, Durigon EL, Okasima V, Queiroz DA, de Moraes-Vasconcelos D, Duarte AJ, et al. Detection of influenza, parainfluenza, adenovirus and respiratory syncytial virus during asthma attacks in children older than 2 years old. Allergologia et immunopathologia. 2003;31(6):311-7. Epub 2003/12/13.

246. Cubie HA, Duncan LA, Marshall LA, Smith NM. Detection of respiratory syncytial virus nucleic acid in archival postmortem tissue from infants. Pediatric pathology & laboratory medicine : journal of the Society for Pediatric Pathology, affiliated with the International Paediatric Pathology Association. 1997;17(6):927-38. Epub 1997/11/14.

247. Gonzalez-Reyes L, Ruiz-Arguello MB, Garcia-Barreno B, Calder L, Lopez JA, Albar JP, et al. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(17):9859-64. Epub 2001/08/09.

248. Moore PE, Cunningham G, Calder MM, DeMatteo AD, Jr., Peeples ME, Summar ML, et al. Respiratory syncytial virus infection reduces beta2-adrenergic responses in human airway smooth muscle. American journal of respiratory cell and molecular biology. 2006;35(5):559-64. Epub 2006/06/10.

249. Hakonarson H, Maskeri N, Carter C, Hodinka RL, Campbell D, Grunstein MM. Mechanism of rhinovirus-induced changes in airway smooth muscle responsiveness. The Journal of clinical investigation. 1998;102(9):1732-41. Epub 1998/11/05.

250. Oliver BG, Johnston SL, Baraket M, Burgess JK, King NJ, Roth M, et al. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection. Respiratory research. 2006;7:71. Epub 2006/05/04.

251. Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS, Chuang S. Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. The Journal of allergy and clinical immunology. 2001;108(6):997-1004. Epub 2001/12/14.

252. Gern JE. Mechanisms of virus-induced asthma. The Journal of pediatrics. 2003;142(2 Suppl):S9-13; discussion S-4. Epub 2003/02/14.

253. Sikkel MB, Quint JK, Mallia P, Wedzicha JA, Johnston SL. Respiratory syncytial virus persistence in chronic obstructive pulmonary disease. The Pediatric infectious disease journal. 2008;27(10 Suppl):S63-70. Epub 2008/10/23.

254. Jafri HS, Chavez-Bueno S, Mejias A, Gomez AM, Rios AM, Nassi SS, et al. Respiratory syncytial virus induces pneumonia, cytokine response, airway obstruction, and chronic inflammatory infiltrates associated with long-term airway hyperresponsiveness in mice. The Journal of infectious diseases. 2004;189(10):1856-65. Epub 2004/05/04.

255. Riedel F, Oberdieck B, Streckert HJ, Philippou S, Krusat T, Marek W. Persistence of airway hyperresponsiveness and viral antigen following respiratory syncytial virus bronchiolitis in young guinea-pigs. The European respiratory journal. 1997;10(3):639-45. Epub 1997/03/01.

256. You D, Becnel D, Wang K, Ripple M, Daly M, Cormier SA. Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respiratory research. 2006;7:107. Epub 2006/08/09.

257. Becnel D, You D, Erskin J, Dimina DM, Cormier SA. A role for airway remodeling during respiratory syncytial virus infection. Respiratory research. 2005;6:122. Epub 2005/10/26.

258. Culley FJ, Pollott J, Openshaw PJ. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. The Journal of experimental medicine. 2002;196(10):1381-6. Epub 2002/11/20.

259. Dakhama A, Park JW, Taube C, Joetham A, Balhorn A, Miyahara N, et al. The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production. Journal of immunology (Baltimore, Md : 1950). 2005;175(3):1876-83. Epub 2005/07/22.

260. Tliba O, Amrani Y. Airway smooth muscle cell as an inflammatory cell: lessons learned from interferon signaling pathways. Proceedings of the American Thoracic Society. 2008;5(1):106-12. Epub 2007/12/21.

261. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. The Journal of experimental medicine. 2005;201(6):937-47. Epub 2005/03/23.

262. Rochlitzer S, Hoymann HG, Muller M, Braun A. No exacerbation but impaired anti-viral mechanisms in a rhinovirus-chronic allergic asthma mouse model. Clinical science (London, England : 1979). 2014;126(1):55-65. Epub 2013/07/05.

263. Uller L, Leino M, Bedke N, Sammut D, Green B, Lau L, et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-beta in bronchial epithelial cells from donors with asthma. Thorax. 2010;65(7):626-32. Epub 2010/07/16.

264. Wu Q, van Dyk LF, Jiang D, Dakhama A, Li L, White SR, et al. Interleukin-1 receptor-associated kinase M (IRAK-M) promotes human rhinovirus infection in lung epithelial cells via the autophagic pathway. Virology. 2013;446(1-2):199-206. Epub 2013/10/01.

265. Papadopoulos NG, Stanciu LA, Papi A, Holgate ST, Johnston SL. A defective type 1 response to rhinovirus in atopic asthma. Thorax. 2002;57(4):328-32. Epub 2002/03/30.

266. Pritchard AL, White OJ, Burel JG, Carroll ML, Phipps S, Upham JW. Asthma is associated with multiple alterations in anti-viral innate signalling pathways. PloS one. 2014;9(9):e106501. Epub 2014/09/10.

267. Tsuchiya K, Isogai S, Tamaoka M, Inase N, Akashi T, Martin JG, et al. Depletion of CD8+ T cells enhances airway remodelling in a rodent model of asthma. Immunology. 2009;126(1):45-54. Epub 2008/06/20.

268. Yewdell JW, Bennink JR. Mechanisms of viral interference with MHC class I antigen processing and presentation. Annual review of cell and developmental biology. 1999;15:579-606. Epub 1999/12/28.

269. Telcian AG, Zdrenghea MT, Caramori G, Laza-Stanca V, Message SD, Kebadze T, et al. Soluble major histocompatibility complex class I-related chain B molecules are increased and correlate with clinical outcomes during rhinovirus infection in healthy subjects. Chest. 2014;146(1):32-40. Epub 2014/02/22.

270. Calven J, Yudina Y, Uller L. Rhinovirus and dsRNA induce RIG-I-like receptors and expression of interferon beta and lambda1 in human bronchial smooth muscle cells. PloS one. 2013;8(4):e62718. Epub 2013/05/10.

271. Takayama S, Tamaoka M, Takayama K, Okayasu K, Tsuchiya K, Miyazaki Y, et al. Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma. Immunology. 2011;134(2):140-50. Epub 2011/09/08.

272. Jackson WT, Giddings TH, Jr., Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS biology. 2005;3(5):e156. Epub 2005/05/12.

273. Salabei JK, Hill BG. Autophagic regulation of smooth muscle cell biology. Redox biology. 2014;4C:97-103. Epub 2014/12/30.

274. Ghavami S, Mutawe MM, Schaafsma D, Yeganeh B, Unruh H, Klonisch T, et al. Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. American journal of physiology Lung cellular and molecular physiology. 2012;302(4):L420-8. Epub 2011/12/14.

275. Walter MJ, Morton JD, Kajiwara N, Agapov E, Holtzman MJ. Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. The Journal of clinical investigation. 2002;110(2):165-75.

276. Rossi GA, Silvestri M, Colin AA. Respiratory syncytial virus infection of airway cells: Role of microRNAs. Pediatric pulmonology. 2015. Epub 2015/04/08.

277. Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M, et al. Viral noncoding RNAs: more surprises. Genes & development. 2015;29(6):567-84. Epub 2015/03/21.

278. Baroni D, Arrigo P. MicroRNA Target and Gene Validation in Viruses and Bacteria #.  T miRNomics: MicroRNA Biology and Computational Analysis. p. 223-31.

279. Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World journal of biological chemistry. 2014;5(4):437-56. Epub 2014/11/27.

280. Harrison TW, Oborne J, Newton S, Tattersfield AE. Doubling the dose of inhaled corticosteroid to prevent asthma exacerbations: randomised controlled trial. Lancet. 2004;363(9405):271-5. Epub 2004/01/31.

281. FitzGerald JM, Becker A, Sears MR, Mink S, Chung K, Lee J. Doubling the dose of budesonide versus maintenance treatment in asthma exacerbations. Thorax. 2004;59(7):550-6. Epub 2004/06/30.

282. Pauwels RA, Pedersen S, Busse WW, Tan WC, Chen YZ, Ohlsson SV, et al. Early intervention with budesonide in mild persistent asthma: a randomised, double-blind trial. Lancet. 2003;361(9363):1071-6. Epub 2003/04/04.

283. Doull IJ, Lampe FC, Smith S, Schreiber J, Freezer NJ, Holgate ST. Effect of inhaled corticosteroids on episodes of wheezing associated with viral infection in school age children: randomised double blind placebo controlled trial. BMJ (Clinical research ed). 1997;315(7112):858-62. Epub 1997/11/14.

284. Oommen A, Lambert PC, Grigg J. Efficacy of a short course of parent-initiated oral prednisolone for viral wheeze in children aged 1-5 years: randomised controlled trial. Lancet. 2003;362(9394):1433-8. Epub 2003/11/07.

285. Haughney J, Price D, Kaplan A, Chrystyn H, Horne R, May N, et al. Achieving asthma control in practice: understanding the reasons for poor control. Respiratory medicine. 2008;102(12):1681-93. Epub 2008/09/26.

286. Matsumura Y. Mechanisms of Reduced Glucocorticoid Sensitivity in Bronchial Asthma. In: Sapey DE, editor. Bronchial Asthma - Emerging Therapeutic Strategies: InTech; 2012.

287. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2014. Available from: http://www.ginasthma.org/.

288. Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. American journal of respiratory and critical care medicine. 2013;187(4):347-65. Epub 2012/08/11.

289. Alagha K, Palot A, Sofalvi T, Pahus L, Gouitaa M, Tummino C, et al. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases. Therapeutic advances in chronic disease. 2014;5(2):85-98. Epub 2014/03/04.

290. Wollin L, Pieper MP. Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD. Pulmonary pharmacology & therapeutics. 2010;23(4):345-54. Epub 2010/04/07.

291. Buels KS, Jacoby DB, Fryer AD. Non-bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guinea-pig model of allergic asthma. British journal of pharmacology. 2012;165(5):1501-14. Epub 2011/08/30.

292. Asano K, Shikama Y, Shoji N, Hirano K, Suzaki H, Nakajima H. Tiotropium bromide inhibits TGF-beta-induced MMP production from lung fibroblasts by interfering with Smad and MAPK pathways in vitro. International journal of chronic obstructive pulmonary disease. 2010;5:277-86. Epub 2010/09/22.

293. Milara J, Serrano A, Peiro T, Artigues E, Gavalda A, Miralpeix M, et al. Aclidinium inhibits cigarette smoke-induced lung fibroblast-to-myofibroblast transition. The European respiratory journal. 2013;41(6):1264-74. Epub 2012/09/29.

294. Ohta S, Oda N, Yokoe T, Tanaka A, Yamamoto Y, Watanabe Y, et al. Effect of tiotropium bromide on airway inflammation and remodelling in a mouse model of asthma. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2010;40(8):1266-75. Epub 2010/03/27.

295. Takeda N, Kondo M, Ito S, Ito Y, Shimokata K, Kume H. Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. American journal of respiratory cell and molecular biology. 2006;35(6):722-9. Epub 2006/07/22.

296. Gower TL, Graham BS. Antiviral activity of lovastatin against respiratory syncytial virus in vivo and in vitro. Antimicrobial agents and chemotherapy. 2001;45(4):1231-7. Epub 2001/03/21.

297. Zeki AA. Statins and asthma: where we stand, and the next critical steps in research. Current medical research and opinion. 2014;30(6):1051-4. Epub 2014/01/24.

298. Ci X, Chu X, Xu X, Li H, Deng X. Short-term roxithromycin treatment attenuates airway inflammation via MAPK/NF-kappaB activation in a mouse model of allergic asthma. Inflammation research : official journal of the European Histamine Research Society  [et al]. 2012;61(7):749-58. Epub 2012/04/07.

299. Dai YR, Wu HY, Wu LQ, Xu H, Yin J, Yan SS, et al. Roxithromycin reduces the viability of cultured airway smooth muscle cells from a rat model of asthma. European review for medical and pharmacological sciences. 2014;18(23):3564-72. Epub 2014/12/24.

300. Wu L, Wang R, Dai Y, Li F, Wu H, Yan S, et al. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats. International immunopharmacology. 2014;24(2):247-55. Epub 2014/12/07.

301. Tong X, Guo T, Liu S, Peng S, Yan Z, Yang X, et al. Macrolide antibiotics for treatment of asthma in adults: A meta-analysis of 18 randomized controlled clinical studies. Pulmonary pharmacology & therapeutics. 2014. Epub 2014/09/25.

302. Knobloch J, Lin Y, Konradi J, Jungck D, Behr J, Strauch J, et al. Inflammatory responses of airway smooth muscle cells and effects of endothelin receptor antagonism. American journal of respiratory cell and molecular biology. 2013;49(1):114-27. Epub 2013/04/18.

303. Coyle TB, Metersky ML. The effect of the endothelin-1 receptor antagonist, bosentan, on patients with poorly controlled asthma: a 17-week, double-blind, placebo-controlled crossover pilot study. The Journal of asthma : official journal of the Association for the Care of Asthma. 2013;50(4):433-7. Epub 2013/02/01.

304. Girodet PO, Ozier A, Bara I, Tunon de Lara JM, Marthan R, Berger P. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacology & therapeutics. 2011;130(3):325-37. Epub 2011/02/22.

305. Girodet PO, Dournes G, Thumerel M, Begueret H, Dos Santos P, Ozier A, et al. Calcium Channel Blocker Reduces Airway Remodeling in Severe Asthma: a Proof-of-concept Study. American journal of respiratory and critical care medicine. 2015. Epub 2015/01/31.

306. Xu J, Zhu YT, Wang GZ, Han D, Wu YY, Zhang DX, et al. The PPARgamma agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma. Acta pharmacologica Sinica. 2015;36(2):171-8. Epub 2015/01/27.

307. Cho JY. Recent advances in mechanisms and treatments of airway remodeling in asthma: a message from the bench side to the clinic. The Korean journal of internal medicine. 2011;26(4):367-83. Epub 2011/12/30.

308. Lee JH, Sohn JH, Ryu SY, Hong CS, Moon KD, Park JW. A novel human anti-VCAM-1 monoclonal antibody ameliorates airway inflammation and remodelling. Journal of cellular and molecular medicine. 2013;17(10):1271-81. Epub 2013/07/17.

309. Berlin AA, Hogaboam CM, Lukacs NW. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma. Laboratory investigation; a journal of technical methods and pathology. 2006;86(6):557-65. Epub 2006/04/12.

310. Humbert M, de Blay F, Garcia G, Prud'homme A, Leroyer C, Magnan A, et al. Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy. 2009;64(8):1194-201. Epub 2009/07/21.

311. Larocca NE, Moreno D, Garmendia JV, De Sanctis JB. New pharmacological treatments for patients with chronic obstructive pulmonary disease (COPD). Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2011;155(1):43-50. Epub 2011/04/09.

312. Sheshadri A, McKenzie M, Castro M. Critical review of bronchial thermoplasty: where should it fit into asthma therapy? Current allergy and asthma reports. 2014;14(11):470. Epub 2014/09/06.

313. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature reviews Genetics. 2014;15(8):541-55. Epub 2014/07/16.


Pathobiology of airway smooth muscle remodeling
Introduction
ASMC plasticity: origins and phenotypes
Acetylcholine: more than bronchoconstriction
Modulation vs Maturation
ASM remodeling as a therapeutic target: experimental evidences
Disclosure Statement
References

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.





Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
caibco@ucv.ve
Este portal ha sido desarrollado gracias al apoyo del Fonacit