Enero-Marzo 2021 85
ISSN 1317-987X


Nutricion de la embarazada, primer pilar de la nutricion para la vida


  1. Micronutrient Supplementation Before and During 1st Pregnancy to Improve Birth Outcomes (JiVitA-5). ClinicalTrials.gov identifier: NCT03921177.
  2. Postnatal care (QS37). National Institute for Health and Care Excellence (NICE). 2a. The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends in Microbiology, 2019-02-01, Volumen 27, Número 2, Páginas 131-147,
  3. Prenatal and Postnatal Determinants in Shaping Offspring's Microbiota in the First Year of Life: A Study Protocol. ClinicalTrials.gov identifier: NCT04122612
  4. Charbonneau, M.R. et al. (2016) A microbial perspective of human developmental biology. Nature 535, 48–55
  5. Tamburini, S. et al. (2016) The microbiome in early life: implications for health outcomes. Nat. Med. 22, 713–722
  6. Christian, P. et al. (2013) Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and mid- dle-income countries. Int. J. Epidemiol. 42, 1340–1355
  7. Prince, A.L. et al. (2016) The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627. e1–627.e16
  8. Bisanz, J.E. et al. (2015) Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of Mor- inga-supplemented probiotic yogurt. Apple. Environ. Microbiol. 81, 4965–4975
  9. Koren, O. et al. (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480
  10. Callahan, B.J. et al. (2017) Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc. Natl. Acad. Sci. U. S. A. 114, 9966–9971
  11. DiGiulio, D.B. et al. (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. U. S. A. 112, 11060–11065
  12. Chu, D.M. et al. (2017) Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326
  13. Doyle, R. et al. (2018) Lactobacillus-deficient vaginal microbiota dominate postpartum women in rural Malawi. Appl. Environ.
  14. Yassour, M. et al. (2016) Natural history of the infant gut micro- biome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81
  15. Bäckhed, F. et al. (2015) Dynamics and stabilization of the human gut micro biome during the first year of life. Cell Host Microbe 17, 690–703
  16. Koenig, J.E. et al. (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1, 4578–4585
  17. Pannaraj, P.S. et al. (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171, 647–654
  18. Braniste, V. et al. (2014) The gut microbiota influences blood– brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158
  19. Yan, J. et al. (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. U. S. A. 113, E7554–E7563
  20. Macpherson, A.J. et al. (2017) How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517
  21. Korpela, K. et al. (2018) Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 8, 2453
  22. Rozé, J.C. et al. (2012) The apparent breastfeeding paradox in very preterm infants: relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts, EPIPAGE and LIFT. BMJ Open 2, e000834
  23. Cabrera-Rubio, R. et al. (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96, 544–551
  24. Li, S.W. et al. (2017) Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and Mainland China. Front. Microbiol. 8, 965
  25. Charbonneau, M.R. et al. (2016) Sialylated milk oligosacchar- ides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871
  26. Lewis, Z.T. et al. (2015) Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13
  27. Smith-Brown, P. et al. (2016) Mothers secretor status affects development of childrens microbiota composition and function: a pilot study. PLoS One 11, e0161211
  28. Sprenger, N. et al. (2017) Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS One 12, e0171814
  29. Alderete, T.L. et al. (2015) Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. Am. J. Clin. Nutr. 102, 1381–1388
  30. Davis, J.C. et al. (2017) Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci. Rep. 7, 40466
  31. Smith, M.I. et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554
  32. Subramanian, S. et al. (2014) Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421
  33. Prendergast, A.J. and Humphrey, J.H. (2014) The stunting syndrome in developing countries. Paediatr. Int. Child Health 34, 250–265
  34. Dinh, D.M. et al. (2016) Longitudinal analysis of the intestinal microbiota in persistently stunted young children in South India. PLoS One 11, e0155405
  35. Gough, E.K. et al. (2015) Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. Microbiome 3, 24
  36. Vonaesch, P. et al. (2018) Stunted childhood growth is associ- ated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl. Acad. Sci. U. S. A. 115, E8489–E8498
  37. Preidis, G.A. et al. (2016) Microbial-derived metabolites reflect an altered intestinal microbiota during catch-up growth in under- nourished neonatal mice. J. Nutr. 146, 940–948
  38. Mayneris-Perxachs, J. et al. (2016) Urinary N-methylnicotina- mide and b-aminoisobutyric acid predict catch-up growth in undernourished Brazilian children. Sci. Rep. 6, 19780
  39. Kumar, M. et al. (2018) Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. Metab. Eng. 49, 128–142
  40. Smith, M.I. et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554
  41. Million, M. et al. (2016) Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6, 26051
  42. Ghosh, T.S. et al. (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS One 9, e95547
  43. Prendergast, A.J. et al. (2014) Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS One 9, e86928
  44. Schwarzer, M. et al. (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857
  45. Storelli, G. et al. (2011) Lactobacillus plantarum promotes Dro- sophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414
  46. Harper, K.M. et al. (2018) Environmental enteric dysfunction pathways and child stunting: a systematic review. PLoS Negl. Trop. Dis. 12, e0006205
  47. Guerrant, R.L. et al. (2013) The impoverished gut – a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10, 220–229
  48. Ordiz, M.I. et al. (2017) Environmental enteric dysfunction and the fecal microbiota in Malawian children. Am. J. Trop. Med. Hyg. 96, 473–476
  49. Velly, H. et al. (2017) Mechanisms of cross-talk between the diet, the intestinal micro biome, and the undernourished host. Gut Microbes 8, 98–112
  50. Preidis, G.A. et al. (2015) Composition and function of the undernourished neonatal mouse intestinal microbiome. J. Nutr. Biochem. 26, 1050–1057
  51. Hashimoto, T. et al. (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481
  52. Brown, E.M. et al. (2015) Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6, 7806
  53. Bourke, C.D. et al. (2016) Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 37, 386–398
  54. Kau, A.L. et al. (2015) Functional characterization of IgA-tar- geted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24
  55. Tun, H.M. et al. (2018) Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172, 368–377
  56. Schulfer, A.F. et al. (2018) Intergenerational transfer of antibiotic- perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242
  57. Sonnenburg, E.D. et al. (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215
  58. Iheozor-Ejiofor, Z. et al. (2017) Treating periodontal disease for preventing adverse birth outcomes in pregnant women. Cochrane Database Syst. Rev. 6, CD005297
  59. Padhi, B.K. et al. (2015) Risk of adverse pregnancy outcomes among women practicing poor sanitation in rural India: a popula- tion-based prospective cohort study. PLoS Med. 12, e1001851
  60. Vidal, A.C. et al. (2013) Associations between antibiotic exposure during pregnancy, birth weight and aberrant methyl- ation at imprinted genes among offspring. Int. J. Obes. (Lond.) 37, 907–913
  61. Luntamo, M. et al. (2010) Effect of repeated treatment of preg- nant women with sulfadoxine-pyrimethamine and azithromycin on preterm delivery in Malawi: a randomized controlled trial. Am. J. Trop. Med. Hyg. 83, 1212–1220
  62. Hallamaa, L. et al. (2018) Child health outcomes after presump- tive infection treatment in pregnant women: a randomized trial. Pediatrics Published online February 22, 2018. http://dx.doi. org/10.1542/peds.2017-2459
  63. Nordqvist, M. et al. (2018) Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: a prospective observational cohort study in Norway. BMJ Open 8, e018021
  64. Jarde, A. et al. (2018) Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 14
  65. Gough, E.K. et al. (2014) The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. BMJ 348, g2267
  66. Härtel, C. et al. (2017) Lactobacillus acidophilus/Bifidobacterium infantis probiotics are associated with increased growth of VLBWI among those exposed to antibiotics. Sci. Rep. 7, 5633
  67. Costeloe, K. et al. (2016) Bifidobacterium breve BBG-001 in very preterm infants: randomised controlled phase 3 trial. Lancet 387, 649–660
  68. Onubi, O.J. et al. (2015) Effects of probiotics on child growth: a systematic review. J. Health Popul. Nutr. 34, 8
  69. Panigrahi, P. et al. (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412
  70. Famouri, F. et al. (2014) Effects of synbiotics on treatment of children with failure to thrive a triple blind placebo-controlled trial. J. Res. Med. Sci. 19, 1046–1050
  71. Stephenson, K.B. et al. (2017) Complementary feeding with cowpea reduces grow faltering in rural Malawian infants: a blind, randomized controlled clinical trial. Am. J. Clin. Nutr. 106, 1500–1507
  72. 101. Steegers-Theunissen, R.P. et al. (2013) The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum. Reprod. Update 19, 640–655
  73. Stephenson, J. et al. (2018) Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 391, 1830–1841
  74. Barker, M. et al. (2018) Intervention strategies to improve nutri- tion and health behaviours before conception. Lancet 391, 1853–1864
  75. Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN), Meeting Series, National Institutes of Health -NIH, Working Groups, January 2021, Washington DC. USA

Nutricion de la embarazada, primer pilar de la nutricion para la vida
Embarazo días 0-270
Infancia: días 270 a 450
Infancia días 450–1000: (6 meses a 2 años)
Más allá de 1000 días

NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista.

Instituto de Medicina Tropical - Facultad de Medicina - Universidad Central de Venezuela.
Elaborado por el Centro de Análisis de Imágenes Biomédicas Computarizadas CAIBCO,
Este portal ha sido desarrollado gracias al apoyo del Fonacit